10 PhD Positions at Royal Holloway’s Centre for Doctoral Training in Cyber Security

At Royal Holloway we have ten PhD positions in Information Security. The catch is that almost all of those positions are reserved for UK residents. Note that this does not mean nationality, see funding page (there might also be some wiggle room in some cases). For more information see the CDT website and the ISG website for what kind of research we do.

Welcome to the EPSRC Centre for Doctoral Training (CDT) in Cyber Security at Royal Holloway. The Centre was established in 2013, and has as its main objective to produce cohorts of highly-trained researchers with a broad understanding of cyber security.

The CDT is hosted by the Information Security Group (ISG), and provides multidisciplinary training to annual cohorts of around ten students each. The students follow a 4-year doctoral programme: the first phase consists of a taught component comprising 25 per cent of the programme. The remaining three years follow the more traditional path of doctoral studies, with each student undertaking research in an advanced topic in the field of cyber security. See the CDT Course of Study page for more information about the programme.

CDT recruitment typically runs from November to April, to select students for the CDT cohort to start the following September. Selected applicants are awarded fully-funded PhD studentships (stipend and College fees) for four years. We consider applications from candidates with undergraduate and masters qualifications in a wide range of disciplines, including, but not limited to, mathematics, computer science, and electrical and electronic engineering.

We are now open to receive applications for students to start their PhD studies in September 2018.

Please explore the links below to learn more about the entry requirements, funding and eligibility, and how to apply to Royal Holloway’s CDT in Cyber Security.

Advertisements

Postdoc at Royal Holloway on Post-Quantum Cryptography in Hardware

Together with Carlos Cid, we have a two-year postdoc position available. The position is focused on hardware implementations of post-quantum cryptography such as lattice-based, code-based, hash-based or mq-based schemes. If you are interested, feel free to get in touch with Carlos or me. If you know of somone who might be interested, we would appreciate if you could make them aware of this position.

Continue reading “Postdoc at Royal Holloway on Post-Quantum Cryptography in Hardware”

Large Modulus Ring-LWE and Module-LWE

Our paper Large Modulus Ring-LWE ≥ Module-LWE — together with Amit Deo — was accepted at AsiaCrypt 2017. Here’s the abstract:

We present a reduction from the module learning with errors problem (MLWE) in dimension d and with modulus q to the ring learning with errors problem (RLWE) with modulus q^{d}. Our reduction increases the LWE error rate \alpha by a quadratic factor in the ring dimension n and a square root in the module rank d for power-of-two cyclotomics. Since, on the other hand, MLWE is at least as hard as RLWE, we conclude that the two problems are polynomial-time equivalent. As a corollary, we obtain that the RLWE instance described above is equivalent to solving lattice problems on module lattices. We also present a self reduction for RLWE in power-of-two cyclotomic rings that halves the dimension and squares the modulus while increasing the error rate by a similar factor as our MLWE to RLWE reduction. Our results suggest that when discussing hardness to drop the RLWE/MLWE distinction in favour of distinguishing problems by the module rank required to solve them.

Our reduction is an application of the main result from Classical Hardness of Learning with Errors in the context of MLWE. In its simplest form, that reduction proceeds from the observation that for \mathbf{a}, \mathbf{s} \in \mathbb{Z}_{q}^{d} with \mathbf{s} small it holds that

q^{d-1} \cdot \langle{\mathbf{a},\mathbf{s}}\rangle \approx \left(\sum_{i=0}^{d-1} q^{i} \cdot a_{i}\right) \cdot \left(\sum_{i=0}^{d-1} q^{d-i-1} \cdot s_{i}\right) \bmod q^{d} = \tilde{a} \cdot \tilde{s} \bmod q^{d}.

Thus, if there exists an efficient algorithm solving the problem in \mathbb{Z}_{q^d}, we can use it to solve the problem in \mathbb{Z}_{q}^d.

In our paper, we essentially show that we can replace integers mod q resp. q^d with the ring of integers R of a Cyclotomic field (considered mod q resp. q^d). That is, we get the analogous reduction from R_{q}^d (MLWE) to R_{q^d} (RLWE). The bulk of our paper is concerned with making sure that the resulting error distribution is sound. This part differs from the Classical Hardness paper since our target distribution is in R rather than \mathbb{Z}.

Continue reading “Large Modulus Ring-LWE and Module-LWE”

Revisiting the Expected Cost of Solving uSVP and Applications to LWE

Our — together with Florian Göpfert, Fernando Virdia and Thomas Wunderer — paper Revisiting the Expected Cost of Solving uSVP and Applications to LWE is now available on ePrint. Here’s the abstract:

Reducing the Learning with Errors problem (LWE) to the Unique-SVP problem and then applying lattice reduction is a commonly relied-upon strategy for estimating the cost of solving LWE-based constructions. In the literature, two different conditions are formulated under which this strategy is successful. One, widely used, going back to Gama & Nguyen’s work on predicting lattice reduction (Eurocrypt 2008) and the other recently outlined by Alkim et al. (USENIX 2016). Since these two estimates predict significantly different costs for solving LWE parameter sets from the literature, we revisit the Unique-SVP strategy. We present empirical evidence from lattice-reduction experiments exhibiting a behaviour in line with the latter estimate. However, we also observe that in some situations lattice-reduction behaves somewhat better than expected from Alkim et al.’s work and explain this behaviour under standard assumptions. Finally, we show that the security estimates of some LWE-based constructions from the literature need to be revised and give refined expected solving costs.

Our work is essentially concerned with spelling out in more detail and experimentally verifying a prediction made in the New Hope paper on when lattice reduction successfully recovers an unusually short vector.

Denoting by v the unusually short vector in some lattice \Lambda of dimension d (say, derived from some LWE instance using Kannan’s embedding), \beta the block size used for the BKZ algorithm and \delta_0 the root-Hermite factor for \beta, then the New Hope paper predicts that v can be found if

\sqrt{\beta/d} \|v\| \leq \delta_0^{2\beta-d} \, {\mathrm{Vol}(\Lambda)}^{1/d},

under the assumption that the Geometric Series Assumption holds (until a projection of the unusually short vector is found).

The rationale is that this condition ensures that the projection of v orthogonally to the first d-\beta (Gram-Schmidt) vectors (denoted as \pi_{d-\beta+1}(v)) is shorter than the expectation for the d-\beta+1-th Gram-Schmidt vector b_{d-\beta+1}^* under the GSA and thus would be found by the SVP oracle when called on the last block of size \beta. Hence, for any \beta satisfying the above inequality, the actual behaviour would deviate from that predicted by the GSA. Finally, the argument can be completed by appealing to the intuition that a deviation from expected behaviour on random instances — such as the GSA — leads to a revelation of the underlying structural, secret information. In any event, such a deviation would already solve Decision-LWE.

In our work, we spell out this argument in more detail (e.g. how v is recovered from \pi_{d-\beta+1}(v)) and throw 23k core hours at the problem of checking if the predicted behaviour, e.g.

prediction.png

matches the observed behaviour, e.g.

observation.png

Just like for the above plots, the general answer is a clear “yes”.

Pretty Pictures or GTFO

I forgot the most important bit. The behaviour of the BKZ algorithm on uSVP(-BDD) instances can be observed in this video.

You can observe the basis approaching the GSA until the SVP oracle finds the unusually short vector \pi_{d-\beta+1}(v). From \pi_{d-\beta+1}(v), v is then immediately recovered using size reduction. The grey area is the currently worked on block. The notation in the legend isn’t consistent with the plots above or even internally (n v d), but the general idea should still be apparent. In case you’re wondering about the erratic behaviour of the tails (which occasionally goes all over the place), this is due to a bug in fpylll which has recently been fixed.

CCA Conversions

In Tightly Secure Ring-LWE Based Key Encapsulation with Short Ciphertexts we — together with Emmanuela Orsini, Kenny Paterson, Guy Peer and Nigel Smart — give a tight reduction of Alex Dent’s IND-CCA secure KEM conversion (from an OW-CPA schemes) when the underlying scheme is (Ring-)LWE:

Abstract: We provide a tight security proof for an IND-CCA Ring-LWE based Key Encapsulation Mechanism that is derived from a generic construction of Dent (IMA Cryptography and Coding, 2003). Such a tight reduction is not known for the generic construction. The resulting scheme has shorter ciphertexts than can be achieved with other generic constructions of Dent or by using the well-known Fujisaki-Okamoto constructions (PKC 1999, Crypto 1999). Our tight security proof is obtained by reducing to the security of the underlying Ring-LWE problem, avoiding an intermediate reduction to a CPA-secure encryption scheme. The proof technique maybe of interest for other schemes based on LWE and Ring-LWE.

Continue reading “CCA Conversions”

16th IMA International Conference on Cryptography and Coding

IMA-CCC is a crypto and coding theory conference biennially held in the UK. It was previously held in Cirencester. So you might have heard of it as the “Cirncester” conference. However, it has been moved to Oxford, so calling it Cirencester now is a bit confusing. Anyway, it is happening again this year. IMA is a small but fine conference with the added perk of being right before Christmas. This is great because around that time of the year Oxford is a fairly Christmas-y place to be.

12 – 14 December 2017, St Catherine’s College, University of Oxford

Continue reading “16th IMA International Conference on Cryptography and Coding”

Fplll Days 3: July 6 – 14, Amsterdam

We’ll have an fplll coding sprint aka “FPLLL Days” in July. This time around, we plan a slightly modified format compared to previous instances. That is, in order to encourage new developers to get involved, we plan to have a 2 day tutorial session (shorter or longer depending on participants/interest) before the start of FPLLL Days proper.

Continue reading “Fplll Days 3: July 6 – 14, Amsterdam”