# NTT Considered Harmful?

In a typical Ring-LWE-based public-key encryption scheme, Alice publishes $(a, b) = (a, a \cdot s + e) \in \mathbb{Z}_q[x]/(x^n+1)$

(with $n$ a power of two1) as the public key, where $s, e$ are both “small” and secret. To encrypt, Bob computes $(c_{0}, c_{1}) = (v \cdot a + e', v \cdot b + e'' + \textnormal{Encode}(m))$

where $v, e', e''$ are small, $m$ is the message $\in \{0,1\}^n$ and $\textnormal{Encode}(\cdot)$ some encoding function, e.g. $\sum_{i=0}^{n-1} \lfloor \frac{q}{2} \rfloor m_i x^i$ . To decrypt, Alice computes $c_{0} \cdot s - c_{1} = (v \cdot a + e')\cdot s - v \cdot (a\cdot s + e) + e'' + \textnormal{Encode}(m),$

which is equal to $e' \cdot s - v \cdot e + e'' + \textnormal{Encode}(m)$. Finally, Alice recovers $m$ from the noisy encoding of $m$ where $e' \cdot s - v \cdot e + e''$ is the noise. In the Module-LWE variant the elements essentially live in $\left(\mathbb{Z}_q[x]/(x^n+1)\right)^k$, e.g. $a$ is not a polynomial but a vector of polynomials.

Thus, both encryption and decryption involve polynomial multiplication modulo $x^n+1$. Using schoolbook multiplication this costs $\mathcal{O}(n^2)$ operations. However, when selecting parameters for Ring-LWE, we can choose $q \equiv 1 \bmod 2n$ which permits to use an NTT to realise this multiplication (we require $\equiv \bmod 2n$ to use the negacyclic NTT which has modular reductions modulo $x^n+1$ baked in). Then, using the NTT we can implement multiplication by

1. evaluation (perform NTT),
2. pointwise multiplication,
3. interpolation (perform inverse NTT).

Steps (1) and (3) take $\mathcal{O}(n \log n)$ operations by using specially chosen evaluation points (roots of one). Step (2) costs $\mathcal{O}(n)$ operations.

This is trick is very popular. For example, many (but not all!) Ring-LWE based schemes submitted to the NIST PQC competition process use it, namely NewHope, LIMA (go LIMA!), LAC, KCL, HILA5, R.EMBLEM, Ding Key-Exchange, CRYSTALS-KYBER, CRYSTALS-DILITHIUM (sorry, if I forgot one). Note that since steps (1) and (3) are the expensive steps, it makes sense to remain in the NTT domain (i.e. after applying the NTT) and only to convert back at the very end. For example, it is faster for Alice to store $s, e$ in NTT domain and, since the NTT maps uniform to uniform, to sample $a$ in NTT domain directly, i.e. to just assume that a random vector $a$ is already the output of an NTT on some other random vector.

This post is about two recent results I was involved in suggesting that this is not necessarily always the best choice (depending on your priorities.)

Warning: This is going to be one of those clickbait-y pieces where the article doesn’t live up to the promise in the headline. The NTT is fine. Some of my best friends use the NTT. In fact I’ve implemented and used the NTT myself.

# Polly Cracker, Revisited

I’ve been mentioning this work a few times; well,  finally a pre-print is ready (by myself, Pooya Farshim, Jean-Charles Faugère and Ludovic Perret).

In this paper we initiate the formal treatment of cryptographic constructions – commonly known as “Polly Cracker” – based on the hardness of computing remainders modulo an ideal over multivariate polynomial rings. This work is motivated by the observation that the Ideal Remainder (IR) problem is one of the most natural candidates to build homomorphic encryption schemes. To this end, we start by formalising and studying the relation between the ideal remainder problem and the problem of computing a Gröbner basis.

We show both positive and negative results.

On the negative side, we define a symmetric Polly Cracker encryption scheme and prove that this scheme only achieves bounded CPA security under the hardness of the IR problem. Furthermore, using results from computational commutative algebra we show that a large class of algebraic transformations cannot convert this scheme to a fully secure Polly Cracker-type scheme.

On the positive side, we formalise noisy variants of the ideal membership, ideal remainder, and Gröbner basis problems. These problems can be seen as natural generalisations of the LWE problem and the approximate GCD problem over polynomial rings. After formalising and justifying the hardness of the noisy assumptions we show – following the recent progress on homomorphic encryption – that noisy encoding of messages results in a fully IND-CPA secure somewhat homomorphic encryption scheme. Together with a standard symmetric-to-asymmetric transformation for additively homomorphic schemes, we provide a positive answer to the long standing open problem proposed by Barkee et al. (and later also by Gentry) of constructing a secure Polly Cracker-type cryptosystem reducible to the hardness of solving a random system of equations. Indeed, our results go beyond that by also providing a new family of somewhat homomorphic encryption schemes based on new, but natural, hard problems.

Our results also imply that Regev’s LWE-based public-key encryption scheme is (somewhat) multiplicatively homomorphic for appropriate choices of parameters. Finally, we estimate the parameters which define our cryptosystem and give a proof-of-concept implementation.

Sage source code included, have fun.