Writing (Crypto) Papers and Version Control

Academics write. Academics in my field also tend to write in groups of two to five people. Back in the dark days — which I’m told are not over for many researchers — this used to involve mailing LaTeX sources around, forgetting to attach the right file, “I take the editing token for file.tex” e-mails, questions like “Where is the most recent version of the draft?” and so on. In some cases, I’m told authors actually sat down together and did grammar fixes in a meeting. In a word, it was horrible.

Judging from anecdotal evidence, it is not that bad anymore. Many people now use some sort of revision control to write their papers, with either Subversion or Git being the tool of choice. However, my impression is that we don’t use the tools available to us to the extent we should. So let me try to make my case for a better practice of collaborative writing for (crypto) academics.

Continue reading “Writing (Crypto) Papers and Version Control”

On the concrete hardness of Learning with Errors

Together with Rachel Player and Sam Scott (both also from the Information Security Group at Royal Holloway, University of London) we finally managed to put our survey on solving the Learning with Errors problem out. Here’s the abstract:

The Learning with Errors (LWE) problem has become a central building block of modern cryptographic constructions. This work collects and presents hardness results for concrete instances of LWE. In particular, we discuss algorithms proposed in the literature and give the expected resources required to run them. We consider both generic instances of LWE as well as small secret variants. Since for several methods of solving LWE we require a lattice reduction step, we also review lattice reduction algorithms and use a refined model for estimating their running times. We also give concrete estimates for various families of LWE instances, provide a Sage module for computing these estimates and highlight gaps in the knowledge about algorithms for solving the Learning with Errors problem.

Continue reading “On the concrete hardness of Learning with Errors”

Lazy Modulus Switching for the BKW Algorithm on LWE

our paper (with Jean-Charles FaugèreRobert Fitzpatrick and Ludovic Perret) on solving small secret LWE faster just hit ePrint (and was accepted for presentation at PKC 2014)

Abstract. Some recent constructions based on LWE do not sample the secret uniformly at random but rather from some distribution which produces small entries. The most prominent of these is the binary-LWE problem where the secret vector is sampled from {0, 1}* or {-1, 0, 1}*. We present a variant of the BKW algorithm for binary-LWE and other small secret variants and show that this variant reduces the complexity for solving binary-LWE. We also give estimates for the cost of solving binary-LWE instances in this setting and demonstrate the advantage of this BKW variant over standard BKW and lattice reduction techniques applied to the SIS problem. Our variant can be seen as a combination of the BKW algorithm with a lazy variant of modulus switching which might be of independent interest.

The code used to produce experimental data is available on bitbucket, source code to compute our complexity estimations is also available. Slides for a presentation discussing this work are also available on bitbucket.

Enrico Bertolazzi’s linear algebra code over GF(2) available

Enrico made the code (if the link doesn’t work search for his name on Research Gate) for his LU factorisation code over GF(2) available online under the GPL. This is an implement of the algorithm described by Anna and him in Fast matrix decomposition in F2 and for which they give timings in that paper (discussed a bit here). I had to fix some includes to make it compile on my box, but nothing major. I can also confirm the impressive performance of their software (I ran testRankComputation).

Continue reading “Enrico Bertolazzi’s linear algebra code over GF(2) available”

How often can you revisit Polly Cracker before it gets silly?

We (with Pooya Farshim, Gottfried Herold, Ludovic Perret and Jean-Charles Faugère) updated our pre-print of the full version of the Polly Cracker paper. It is a major revision based on Gottfried’s corrections and critique.

An All-In-One Approach to Differential Cryptanalysis for Small Block Ciphers

a paper that I wrote with Gregor Leander is finally done, out and accepted for presentation at SAC.

We present a framework that unifies several standard differential techniques. This unified view allows us to consider many, potentially all, output differences for a given input difference and to combine the information derived from them in an optimal way. We then propose a new attack that implicitly mounts several standard, truncated, impossible, improbable and possible future variants of differential attacks in parallel and hence allows to significantly improve upon known differential attacks using the same input difference. To demonstrate the viability of our techniques, we apply them to KATAN-32. In particular, our attack allows us to break 115 rounds of KATAN-32, which is 37 rounds more than previous work. For this, our attack exploits the non-uniformity of the difference distribution after 91 rounds which is 20 rounds more than the previously best known differential characteristic. Since our results still cover less than 1/2 of the cipher, they further strengthen our confidence in KATAN-32’s resistance against differential attacks.

 

Rank-profile revealing Gaussian elimination and the CUP matrix decomposition

by Claude-Pierre Jeannerod, Clément Pernet, Arne Storjohann is now available on the archive. I like this paper a lot and we also referenced it in both the M4RI elimination paper and the M4RIE paper so three cheers that it’s now available.

Abstract: Transforming a matrix over a field to echelon form, or decomposing the matrix as a product of structured matrices that reveal the rank profile, is a fundamental building block of computational exact linear algebra. This paper surveys the well known variations of such decompositions and transformations that have been proposed in the literature. We present an algorithm to compute the CUP decomposition of a matrix, adapted from the LSP algorithm of Ibarra, Moran and Hui (1982), and show reductions from the other most common Gaussian elimination based matrix transformations and decompositions to the CUP decomposition. We discuss the advantages of the CUP algorithm over other existing algorithms by studying time and space complexities: the asymptotic time complexity is rank sensitive, and comparing the constants of the leading terms, the algorithms for computing matrix invariants based on the CUP decomposition are always at least as good except in one case. We also show that the CUP algorithm, as well as the computation of other invariants such as transformation to reduced column echelon form using the CUP algorithm, all work in place, allowing for example to compute the inverse of a matrix on the same storage as the input matrix.

http://arxiv.org/abs/1112.5717