Recently, Nicolas Courtois sent me a revised version of my PRESENT bitslice implementation which improves the representation of the S-Box and hence the performance considerably. A paper describing the techniques used to arrive at this new S-box representation is now available on eprint:

Solving Circuit Optimisation Problems in Cryptography and Cryptanalysis

Nicolas T. Courtois, Daniel Hulme and Theodosis Mourouzis

Abstract:One of the hardest problems in computer science is the problem of gate-eficient implementation. Such optimizations are particularly important in industrial hardware implementations of standard cryptographic algorithms. In this paper we focus on optimizing some small circuits such as S-boxes in cryptographic algorithms. We consider the notion of Multiplicative Complexity, a new important notion of complexity introduced in 2008 by Boyar and Peralta and applied to find interesting optimizations for the S-box of the AES cipher. We applied this methodology to produce a compact implementation of several ciphers. In this short paper we report our results on PRESENT and GOST, two block ciphers known for their exceptionally low hardware cost. This kind of representation seems to be very promising in implementations aiming at preventing side channel attacks on cryptographic chips such as DPA. More importantly, we postulate that this kind of minimality is also an important and interesting tool in cryptanalysis.