The ISG has **two** lectureship positions available. One regular lectureship position and one with a teaching focus.

Continue reading “Two Lecturer Positions in the Information Security Group”

Skip to content
# malb::blog

## Two Lecturer Positions in the Information Security Group

## fpylll

## London-ish Lattice Coding & Crypto Meetings

## Tentative program

## Venue

## Registration

## Footnotes:

^{1}
## GSW13: 3rd Generation Homomorphic Encryption from Learning with Errors

## Lecturer Position in the Information Security Group

## fplll days 1

## Cysignals

a blog about cryptography, math software and kittens

The ISG has **two** lectureship positions available. One regular lectureship position and one with a teaching focus.

Continue reading “Two Lecturer Positions in the Information Security Group”

fpylll is a Python library for performing lattice reduction on lattices over the Integers. It is based on the fplll, a C++ library which describes itself as follows:

fplll contains several algorithms on lattices that rely on floating-point computations. This includes implementations of the floating-point LLL reduction algorithm, offering different speed/guarantees ratios. It contains a ‘wrapper’ choosing the estimated best sequence of variants in order to provide a guaranteed output as fast as possible. In the case of the wrapper, the succession of variants is oblivious to the user. It also includes a rigorous floating-point implementation of the Kannan-Fincke-Pohst algorithm that finds a shortest non-zero lattice vector, and the BKZ reduction algorithm.

fplll is distributed under the GNU Lesser General Public License (either version 2.1 of the License, or, at your option, any later version) as published by the Free Software Foundation.

In short, **fplll** is your best bet at a publicly available fast lattice-reduction library and **fpylll** provides a convenient interface for it — for experimentation, development and extension — from Python.

For the rest of this post, I’ll give you a tour of the features currently implemented in **fpylll** and point out some areas where we could do with some help.

Cong Ling and myself are starting London-ish Lattice Coding & Crypto Meetings. Please help us spread the word.

Lattice-based approaches are emerging as a common theme in modern cryptography and coding theory. In communications, they are an indispensable mathematical tool to construct powerful error-correction codes achieving the capacity of wireless channels. In cryptography, they are used to building lattice-based schemes with provable security, better asymptotic efficiency, resilience against quantum attacks and new functionalities such as fully homomorphic encryption.

We are setting up meetings on lattices in cryptography and coding in the London area.

^{1}These meetings are inspired by similar meetings held in Lyon^{2}and are aimed at connecting the two communities in the UK with a common interest in lattices, with a long-term goal of building a synergy of the two fields.The meetings will consist of several talks on related topics, with a format that will hopefully encourage interaction (e.g. longer than usual time slots).

For details (as they become available) see website.

11:00 – 12:30: **Achieving Channel Capacity with Lattice Codes** Cong Ling

13:30 – 15:00: **Post-Quantum Cryptography** Nigel Smart

15:00 – 16:30: **Lattice Coding with Applications to Compute-and-Forward** Alister Burr

16:30 – 18:00: **A Subfield Lattice Attack on Overstretched NTRU Assumptions** Martin Albrecht

Room 611

(Dennis Gabor Seminar Room)

Department of Electrical and Electronic Engineering

Imperial College London

South Kensington London

SW7 2AZ

Everyone is welcome. Two caveats:

- Speakers are told the audience is somewhat familiar with lattices.
- Please send us an email at c.ling@imperial.ac.uk, so that the size of the room fits with the number of participants.

Our definition of London includes Egham, where Royal Holloway’s main campus is located.

This week our reading group studied Homomorphic Encryption from Learning with Errors: Conceptually-Simpler, Asymptotically-Faster, Attribute-Based by Craig Gentry, Amit Sahai and Brent Waters: a 3rd generation fully homomorphic encryption scheme.

The paper is partly motivated by that multiplication in previous schemes was complicated or at least not natural. Let’s take the BGV scheme where ciphertexts are simply LWE samples for and with being the message bit and is some “small” error. Let’s write this as because it simplifies some notation down the line. In this notation, multiplication can be accomplished by because . However, we now need to map back to using “relinearisation”, this is the “unnatural” step.

However, this is only unnatural in this particular representation. To see this, let’s rewrite as a linear multivariate polynomial . This polynomial evaluates to on the secret . Note that evaluating a polynomial on is the same as reducing it modulo the set of polynomials .

Continue reading “GSW13: 3rd Generation Homomorphic Encryption from Learning with Errors”

My department is hiring a new lecturer whose interests are related to, or complement, current strengths of the ISG. If you have questions get in touch either as suggested below or — if that works better for you — with me.

Lecturer in Information Security

[…]

Applications are invited for the post of Lecturer in the Information Security Group at Royal Holloway, University of London

Applications are invited from researchers whose interests are related to, or complement, current strengths of the ISG. We are particularly interested in applicants who will be able to help drive forward research related to Internet of Things (IoT) security.

Applicants should have a Ph.D. in a relevant subject or equivalent, be a self-motivated researcher, and have a strong publication record. Applicants should be able to demonstrate an enthusiasm for teaching and communicating with diverse audiences, as well as show an awareness of contemporary issues relating to cyber security.

This is a full time and permanent post, with an intended start date of 1st September, 2016, although an earlier or slightly later start may be possible. This post is based in Egham, Surrey, where the College is situated in a beautiful, leafy campus near to Windsor Great Park and within commuting distance from London.

For an informal discussion about the post, please contact Prof. Keith Mayes on keith.mayes@rhul.ac.uk.

To view further details of this post and to apply please visit https://jobs.royalholloway.ac.uk/. The Human Resources Department can be contacted with queries by email at: recruitment@rhul.ac.uk or via telephone on: +44 (0)1784 41 4241.

Please quote the reference:

0216-068Closing Date:

Midnight, 1st April 2016Interview Date:

To be confirmed

We particularly welcome female applicants as they are under-represented at this level in the Department of Information Security within Royal Holloway, University of London.

We’ll have a first fplll coding sprint aka “fplll days” from June 20 to June 24 at ENS Lyon.

The idea of fplll days is inspired by and might follow the format of Sage Days which are semi-regularly organised by the SageMath community. The idea is simply to get a bunch of motivated developers in a room to work on code. Judging from experience in the SageMath community, lots of interesting projects get started and completed.

We intend to combine the coding sprint with the lattice meeting (to be confirmed), so we’d be looking at 3 days of coding plus 2 days of regular lattice meeting. We might organise one talk per coding day, to give people a reason to gather at a given time of the day, but the focus would be very much on working on fplll together.

If you’d like to attend, please send an e-mail to one of the maintainers e.g. me.

If you’ve written a fair amount of Cython code in your time, chances are that you got frustrated by

- buggy C/C++ code crashing your Python shell and
- the fact that you cannot interrupt C/C++ functions.

For example, the following Cython code cannot be interrupted:

while True: pass

On the other hand, if you have written Cython code in Sage, then you might have come across its nifty `sig_on()`

, `sig_off()`

and `sig_check()`

macros which prevent crashes and allow your calls to C/C++ code to be interrupted. Sage had signal handling — crashes, interrupts — forever (see below).

Cysignals is Sage’s signal handling reborn as a stand-alone module, i.e. it allows to wrap C/C++ code blocks in `sig_on()`

and `sig_off()`

pairs which catch signals such as `SIGSEGV`

. Using it is straight-forward. Simply add

include "cysignals/signals.pxi"

to each Cython module and then wrap long-running computations in `sig_on()`

/ `sig_off()`

pairs or check for signals with `sig_check()`

. See the cysignals documentation for details.

We have a first pre-release out. Pre-release because we haven’t switched Sage to the new, stand-alone code yet. Once this is done, we’ll publish version 1.0 since some version of this code has been in use on many different systems for at least decade.