
Linear Algebra with Errors: On the Complexity of
the Learning with Errors Problem

Martin R. Albrecht

joint work with C. Cid, J-C. Faugère, R. Fitzpatrick, and L. Perret

SIAM AG’13

Contents

Introduction

Warm-Up: Deciding Consistency in Noise Free Systems

Solving Decision-LWE

Solving Decision-LWE with Small Secrets

Learning with Errors

Definition (Learning with Errors)

I Let n ≥ 1, m� n, q odd, χ be a probability distribution on Zq and
s be a secret vector in Zn

q.

I Let e←$ χ
m, A←$ U(Zm×n

q). We denote by L
(n)
s,χ the distribution

on Zm×n
q × Zm

q produced as (A,A · s + e).

I Decision-LWE is the problem of deciding whether

A, c←$ U(Zm×n
q × Zm

q) or A, c←$ L
(n)
s,χ.

In other words: Is c sampled uniformly randomly or is it A · s + e where
typically e is “small”.

Typically, χ is a discrete Gaussian distribution with small standard
deviation.

Learning with Errors

Definition (Learning with Errors)

I Let n ≥ 1, m� n, q odd, χ be a probability distribution on Zq and
s be a secret vector in Zn

q.

I Let e←$ χ
m, A←$ U(Zm×n

q). We denote by L
(n)
s,χ the distribution

on Zm×n
q × Zm

q produced as (A,A · s + e).

I Decision-LWE is the problem of deciding whether

A, c←$ U(Zm×n
q × Zm

q) or A, c←$ L
(n)
s,χ.

In other words: Is c sampled uniformly randomly or is it A · s + e where
typically e is “small”.

Typically, χ is a discrete Gaussian distribution with small standard
deviation.

Learning with Errors

Definition (Learning with Errors)

I Let n ≥ 1, m� n, q odd, χ be a probability distribution on Zq and
s be a secret vector in Zn

q.

I Let e←$ χ
m, A←$ U(Zm×n

q). We denote by L
(n)
s,χ the distribution

on Zm×n
q × Zm

q produced as (A,A · s + e).

I Decision-LWE is the problem of deciding whether

A, c←$ U(Zm×n
q × Zm

q) or A, c←$ L
(n)
s,χ.

In other words: Is c sampled uniformly randomly or is it A · s + e where
typically e is “small”.

Typically, χ is a discrete Gaussian distribution with small standard
deviation.

Learning with Errors

Definition (Learning with Errors)

I Let n ≥ 1, m� n, q odd, χ be a probability distribution on Zq and
s be a secret vector in Zn

q.

I Let e←$ χ
m, A←$ U(Zm×n

q). We denote by L
(n)
s,χ the distribution

on Zm×n
q × Zm

q produced as (A,A · s + e).

I Decision-LWE is the problem of deciding whether

A, c←$ U(Zm×n
q × Zm

q) or A, c←$ L
(n)
s,χ.

In other words: Is c sampled uniformly randomly or is it A · s + e where
typically e is “small”.

Typically, χ is a discrete Gaussian distribution with small standard
deviation.

Applications

I Public-Key Encryption, Digital Signature Schemes

I Identity-based Encryption: encrypting to an identity (e-mail address
. . .) instead of key

I Fully-homomorphic encryption: computing with encrypted data

I . . .

Asymptotic Security

Reduction of worst-case hard lattice problems such as Closest Vector
Problem (CVP) to average-case LWE.

But to build cryptosystems we need to understand the hardness of
concrete instances: Given m, n, q and χ how many operations does it
take to solve Decision-LWE?

Asymptotic Security

Reduction of worst-case hard lattice problems such as Closest Vector
Problem (CVP) to average-case LWE.

But to build cryptosystems we need to understand the hardness of
concrete instances: Given m, n, q and χ how many operations does it
take to solve Decision-LWE?

Solving Strategies

Given A, c with c = A · s + e solve the problem in the primal lattice or
the dual lattice.

I Solve the Bounded-Distance Decoding (BDD) problem in the primal
lattice: Find s′ such that

‖y − c‖ is minimised, for y = A · s′.

I Solve the Short-Integer-Solutions (SIS) problem in the scaled dual
lattice. Find a short y such that

y · A = 0 and check if 〈y, c〉 = y · (A · s + e) = 〈y, e〉 is short.

In this talk

I solving SIS using combinatorial techniques and

I no bound on m.

Solving Strategies

Given A, c with c = A · s + e solve the problem in the primal lattice or
the dual lattice.

I Solve the Bounded-Distance Decoding (BDD) problem in the primal
lattice: Find s′ such that

‖y − c‖ is minimised, for y = A · s′.

I Solve the Short-Integer-Solutions (SIS) problem in the scaled dual
lattice. Find a short y such that

y · A = 0 and check if 〈y, c〉 = y · (A · s + e) = 〈y, e〉 is short.

In this talk

I solving SIS using combinatorial techniques and

I no bound on m.

Solving Strategies

Given A, c with c = A · s + e solve the problem in the primal lattice or
the dual lattice.

I Solve the Bounded-Distance Decoding (BDD) problem in the primal
lattice: Find s′ such that

‖y − c‖ is minimised, for y = A · s′.

I Solve the Short-Integer-Solutions (SIS) problem in the scaled dual
lattice. Find a short y such that

y · A = 0 and check if 〈y, c〉 = y · (A · s + e) = 〈y, e〉 is short.

In this talk

I solving SIS using combinatorial techniques and

I no bound on m.

Contents

Introduction

Warm-Up: Deciding Consistency in Noise Free Systems

Solving Decision-LWE

Solving Decision-LWE with Small Secrets

Gaussian elimination

Asume e = 0, we hence want to decide whether there is a solution s such
that c = A · s. We may apply Gaussian elimination to the matrix:

[A | c] =


a11 a12 . . . a1n c1

a21 a22 . . . a2n c2

...
...

. . .
...

...
am1 am2 . . . amn cm


to recover

[Ã | c̃] =



a11 a12 . . . a1n c1

0 ã22 . . . ã2n c̃2

...
...

. . .
...

...
0 0 . . . ãmn c̃n
...

...
. . .

...
...

0 0 . . . 0 c̃m


If and only if c̃n+1, . . . , c̃m are all zero, the system is consistent.

Contents

Introduction

Warm-Up: Deciding Consistency in Noise Free Systems

Solving Decision-LWE

Solving Decision-LWE with Small Secrets

BKW Algorithm I

The BKW algorithm was first proposed for the Learning Parity with Noise
(LPN) problem which can be viewed as a special case of LWE.

Avrim Blum, Adam Kalai, and Hal Wasserman.
Noise-tolerant learning, the parity problem, and the statistical query
model.
J. ACM, 50(4):506–519, 2003.

BKW Algorithm II

We revisit Gaussian elimination:
a11 a12 a13 · · · a1n c1

a21 a22 a23 · · · a2n c2

...
...

. . .
...

...
am1 am2 am3 · · · amn cm



=


a11 a12 a13 · · · a1n 〈a1, s〉+ e1

a21 a22 a23 · · · a2n 〈a2, s〉+ e2

...
...

. . .
...

...
am1 am2 am3 · · · amn 〈am, s〉+ em



⇒


a11 a12 a13 · · · a1n 〈a1, s〉+ e1

0 ã22 ã23 · · · ã2n 〈ã2, s〉+ e2 − a21

a11
e1

...
...

. . .
...

...
0 ãm2 ãm3 · · · ãmn 〈ãm, s〉+ em − am1

a11
e1



BKW Algorithm III

I ai1
a11

is essentially a random element in Zq, hence c̃i ←$ U(Zq).

I Even if ai1
a11

is 1 the variance of the noise doubles at every level
because of the addition.

Setting

I Problem: additions and multiplications ⇒ noise of c̃ values
increases rapidly

I Strategy: exploit that we have many rows: m� n.

BKW Algorithm IV

We considering a ≈ log n ‘blocks’ of b elements each.
a11 a12 a13 · · · a1n c0

a21 a22 a23 · · · a2n c1

...
...

. . .
...

...
am1 am2 am3 · · · amn cm



BKW Algorithm V

For each block we build a table of all qb possible values.

T =


0 0 a13 · · · a1n c0

0 1 a23 · · · a2n c1

...
...

. . .
...

...
q q aq23 · · · aq2n cq2



BKW Algorithm VI

We use these tables to eliminate b entries in other rows.


a11 a12 a13 · · · a1n c0

a21 a22 a23 · · · a2n c1

...
...

. . .
...

...
am1 am2 am3 · · · amn cm



+


0 0 a13 · · · a1n c0

0 1 a23 · · · a2n c1

...
...

. . .
...

...
q q aq23 · · · aq2n cq2



⇒


a11 a12 a13 · · · a1n c0

0 0 a23 · · · ã2n c̃1

...
...

. . .
...

...
0 0 ãm3 · · · ãmn c̃m



BKW Algorithm VII

This gives a time complexity of

≈ (a2n) · qb

2

and a memory requirement of

≈ qb

2
· a · (n + 1).

A detailed analysis of the algorithm for LWE is available as:

Martin R. Albrecht, Carlos Cid, Jean-Charles Faugère, Robert
Fitzpatrick and Ludovic Perret
On the Complexity of the BKW Algorithm on LWE
ePrint Report 2012/636, 2012.
to appear in Designs, Codes and Cryptography.

Contents

Introduction

Warm-Up: Deciding Consistency in Noise Free Systems

Solving Decision-LWE

Solving Decision-LWE with Small Secrets

The Setting

Assume s←$ U(Zn
2), i.e. all entries in s are very small.

This is a common setting in cryptography for performance reasons and
because this allows to realise some advanced schemes. In particular, a
technique called ‘modulus switching’ can be used to improve the
performance of homomorphic encryption schemes.

Zvika Brakerski and Vinod Vaikuntanathan.
Efficient fully homomorphic encryption from (standard) LWE.
In Rafail Ostrovsky, editor, IEEE 52nd Annual Symposium on
Foundations of Computer Science, FOCS 2011, pages 97–106. IEEE,
2011.

Modulus Reduction I

Given a sample (a, c) where c = 〈a, s〉+ e and some p < q we may
consider (⌊

p

q
· a
⌉
,

⌊
p

q
· c
⌉)

with⌊
p

q
· c
⌉

=

⌊〈
p

q
· a, s

〉
+

p

q
· e
⌉

=

⌊〈⌊
p

q
· a
⌉
, s

〉
+

〈
p

q
· a−

⌊
p

q
· a
⌉
, s

〉
+

p

q
· e
⌉

=

〈⌊
p

q
· a
⌉
, s

〉
+

〈
p

q
· a−

⌊
p

q
· a
⌉
, s

〉
+

p

q
· e ± [0, 0.5]

=

〈⌊
p

q
· a
⌉
, s

〉
+ e′′.

Modulus Reduction II

Example

p, q = 10, 20

a = (8,−2, 0, 4, 2,−7),

s = (0, 1, 0, 0, 1, 1),

〈a, s〉 = −7,

c = −6

a′ =

⌊
p

q
· a
⌉

= (4,−1, 0, 2, 1,−4)

〈a′, s〉 = −4,⌊
p

q
· c
⌉

= −4.

Modulus Reduction III

Typically, we would choose

p ≈ q ·
√

n · Var(U([−0.5, 0.5])) · σ2
s /σ = q ·

√
n/12σs/σ

where σs is the standard deviation of elements in s.

If s is small then e′′ is small and we may compute with the smaller
‘precision’ p at the cost of a slight increase of the noise rate.

The complexity hence drops to

≈ (a2n) · pb

2

with a usually is unchanged.

Lazy Modulus Switching I
For simplicity assume p = 2κ and consider the LWE matrix

[A | c] =


a1,1 a1,2 . . . a1,n c1

a2,1 a2,2 . . . a2,n c2

...
...

. . .
...

...
am,1 am,2 . . . am,n cm


as

[A | c] =


ah1,1 al1,1 ah1,2 al1,2 . . . ah1,n al1,n c1

ah2,1 al2,1 ah2,2 al2,2 . . . ah2,n al2,n c2

...
...

...
...

. . .
...

...
...

ahm,1 alm,1 ahm,2 alm,2 . . . ahm,n alm,n cm


where ahi,j and ali,j denote high and low order bits:

I ahi,j corresponds to bp/q · ai,je and

I ali,j corresponds to bp/q · ai,je − p/q · ai,j , the rounding error.

Lazy Modulus Switching II

In order to clear the most significant bits in every component of the ai ,
we run the BKW algorithm on the matrix [A | c] but only consider

[A, c]h :=


ah1,1 ah1,2 . . . ah1,n c1

ah2,1 ah2,2 . . . ah2,n c2

...
...

. . .
...

...
ahm,1 ahm,2 . . . ahm,n cm

 .

when searching for collisions.

We only manage elimination tables for the most significant κ bits.
All arithmetic is performed in Zq but collisions are searched for in Zp.

Lazy Modulus Switching III

I We do not apply modulus reduction in one shot, but only when
needed

I As a consequence rounding errors accumulate not as fast: they only
start to accumulate when we branch on a component.

We may reduce p by a factor of
√

a/2.

This may translate to huge gains the complexity of BKW is ≈ pb where
typically b ≈ n/ log n.

Stunting Growth I

��|��|��|��|��a(0) a(9)

Children, from T 0

Children, from T 1

Parent entries (w.r.t. T 2)
Strangers

Figure : Children, parents and strangers.

Stunting Growth II

Assume b = 1 and a ≥ 3, for the outputs (ãi , c̃i) where the first three
components are reduced have:

ãi = ai from L(n)
s,χ

+ ã0 with ã0 from T 0

+ ã1 with ã1 from T 1

+ ã2 with ã2 from T 2

Considering component ãi,(0) we have that

I ai,(0) is uniform in Zq,

I ã0,(0) reduces this to something of size r = log2 q − log2 p

I ã1,(0) has size log2 q − log2 p

I ã2,(0) has size ≈ log2 q − log2 p + 1, and depends on entries on T 1.

Stunting Growth III

We sample many candidates for ã2 to find one where ã2,(0) is particularly
small.

This is easier than for ã3 but influences ã3.

Stunting Growth IV

Assumption

Let the vectors xi ∈ Zτq be sampled from some distribution D such that

σ2 = Var(xi,(j)) where D is any distribution on (sub-)vectors observable
in our algorithm. Let y = minabs (x0, . . . , xn−1) where minabs picks that

vector xmin with
∑b·`−1

j=0 |xmin,(j)| minimal. The standard deviation

σn =
√

Var(y(j)) of components in y satisfies

σ/σn ≥ cτ
τ
√

n + (1− cτ)

with

cτ = 0.20151418166952917
√
τ + 0.32362108131969386 ≈ 1

5

√
τ +

1

3
.

Martin R. Albrecht, Jean-Charles Faugère, Robert Fitzpatrick and
Ludovic Perret
Lazy Modulus Switching for the BKW Algorithm on LWE
in preparation, 2013.

Results

BKW + Mod. Switch
n log Z2 log mem log Z2 log mem

32 40.0 26.2 39.4 25.5
64 55.9 48.8 52.5 46.0

128 97.6 90.0 89.6 81.2
256 182.1 174.2 164.0 156.7
512 361.0 352.8 305.6 297.9

1024 705.5 697.0 580.2 572.2
This Work (1) This Work (2)

n log Z2 log mem log Z2 log mem
32 40.0 26.1 40.0 26.1
64 49.2 42.1 47.6 32.0

128 78.2 70.8 74.2 46.3
256 142.7 134.9 132.5 67.1
512 251.2 243.1 241.8 180.0

1024 494.8 486.5 485.0 407.5

Table : Cost for solving Decision-LWE with advantage ≈ 1 for BKW and BKZ
variants where q and σ are chosen as in Regev’s scheme and s←$ U(Zn

2)
“logZ2” gives the number of “bit operations” and “logmem” the memory
requirement of Zq elements. All logarithms are base 2.

Fin

Questions?

	Introduction
	Warm-Up: Deciding Consistency in Noise Free Systems
	Solving Decision-LWE
	Solving Decision-LWE with Small Secrets

