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What are Algebraic Attacks?

1 Algebraic attacks model a cryptographic primitive (such as a block cipher) as a

system of equations.

2 �en, by applying (algebraic) transformations to these equations they (attempt

to) recover information about the secret of the primitive (the key).

Hence, they are quite di�erent in spirit from statistical techniques such as linear and

di�erential cryptanalysis.
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A Polemic History of Algebraic Attacks

1959 – the “prophecy”

“�us, if we could show that solving a certain system requires at least as much
work as solving a system of simultaneous equations in a large number of
unknowns, of a complex type, then we would have a lower bound of sorts for
the work characteristic.”

– Claude Shannon

2002 – the breakthrough
Crucial Cipher Flawed, Cryptographers Claim – Two cryptographers say that
the new Advanced Encryption Standard, [. . . ] has a hole in it. Although some
of their colleagues doubt the validity of their analysis, the cryptographic
community is on edge, wondering whether the new cipher can withstand a
future assault.

– Science Magazine

2011 – the disillusion

Not a single proper block cipher has been broken using pure algebraic techniques
faster than with other techniques.

Martin R. Albrecht — Algebraic Techniques in Cryptanalysis 5/46



Introduction Equations Solvers Advanced Techniques

So, why bother?

Algebraic techniques

1 have been proven powerful against some stream ciphers and public key schemes,

2 provide a uni�ed attack methodology for various areas of cryptography,

3 may be one of the few choices if very few plaintext-ciphertext pairs are available,

4 may prove useful under more relaxed attack settings (many plaintexts . . . ),

5 become more relevant as focus shi�s toward (very) lightweight constructions,

6 can be combined with other techniques (di�erential, side-channels, . . . ),

7 are fun . . .well, to some anyway!
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SP-Networks I

We construct an equation system for the block cipher Present, which

is a substituion-permutation network,

has a block size of 64 bits,

either takes 80-bit or 128-bit keys (Present-80 and Present-128 resp.)

has 31 rounds (shorter variants are denoted by Present-{80,128}-Nr),
is conceptually simple, and

has been extensively studied (di�erential, linear, side-channels, higher-order

di�erential, algebraic).

Andrey Bogdanov, Lars R. Knudsen, Gregor Leander, Christof Paar, Axel Poschmann,

Matthew J. B. Robshaw, Yannick Seurin, and C. Vikkelsoe.

PRESENT: An ultra-lightweight block cipher.

In Cryptographic Hardware and Embedded Systems - CHES 2007, volume 7427 of Lecture
Notes in Computer Science, pages 450–466, Berlin, Heidelberg, New York, 2007. Springer
Verlag.
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SP-Networks II
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Key Addition and the Permutation Layer

Key addition is easy, if Xi is a bit before key addition and Yi is a bit a�er key

addition, we write:

Yi + Xi + Ki(= 0).

the Permutation layer is just a permutation of wires given by the rule

s ⋅ j + i⇒ B ⋅ i + j for 0 ≤ j < 16 and 0 ≤ i < 4,

hence we simply rename variables.

In general the permuation layer gives rise to linear equations.
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S-Box I

�e S-box is a non-linear operation.

However, �nding equations is still easy.

As an example consider the 3-bit (since it

�ts on the slides) S-box

[7, 6, 0, 4, 2, 5, 1, 3].

Construct the matrix on the right and

perform fraction-free Gaussian

elimination on it (�tting a linear model).

0 1 2 3 4 5 6 7
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0 0 0 0 1 1 1 1 x0
0 0 1 1 0 0 1 1 x1
0 1 0 1 0 1 0 1 x2
1 1 0 1 0 1 0 0 y0
1 1 0 0 1 0 0 1 y1
1 0 0 0 0 1 1 1 y2
0 0 0 0 0 0 1 1 x0x1
0 0 0 0 0 1 0 1 x0x2
0 0 0 0 0 1 0 0 x0y0
0 0 0 0 1 0 0 1 x0y1
0 0 0 0 0 1 1 1 x0y2
0 0 0 1 0 0 0 1 x1x2
0 0 0 1 0 0 0 0 x1y0
0 0 0 0 0 0 0 1 x1y1
0 0 0 0 0 0 1 1 x1y2
0 1 0 1 0 1 0 0 x2y0
0 1 0 0 0 0 0 1 x2y1
0 0 0 0 0 1 0 1 x2y2
1 1 0 0 0 0 0 0 y0y1
1 0 0 0 0 1 0 0 y0y2
1 0 0 0 0 0 0 1 y1y2
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S-Box II
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1 0 0 0 0 0 0 0 x0y0 + x1 + x2 + y0 + y1 + 1
0 1 0 0 0 0 0 0 x0y0 + x0 + x1 + y2 + 1
0 0 1 0 0 0 0 0 x0y0 + x0 + y0 + 1
0 0 0 1 0 0 0 0 x0y0 + x0 + x2 + y1 + y2
0 0 0 0 1 0 0 0 x0y0 + x0 + x1 + x2 + y0 + y1 + y2 + 1
0 0 0 0 0 1 0 0 x0y0
0 0 0 0 0 0 1 0 x0y0 + x2 + y0 + y2
0 0 0 0 0 0 0 1 x0y0 + x1 + y1 + 1
0 0 0 0 0 0 0 0 x0x2 + x1 + y1 + 1
0 0 0 0 0 0 0 0 x0x1 + x1 + x2 + y0 + y1 + y2 + 1
0 0 0 0 0 0 0 0 x0y1 + x0 + x2 + y0 + y2
0 0 0 0 0 0 0 0 x0y0 + x0y2 + x1 + x2 + y0 + y1 + y2 + 1
0 0 0 0 0 0 0 0 x1x2 + x0 + x1 + x2 + y2 + 1
0 0 0 0 0 0 0 0 x0y0 + x1y0 + x0 + x2 + y1 + y2
0 0 0 0 0 0 0 0 x0y0 + x1y1 + x1 + y1 + 1
0 0 0 0 0 0 0 0 x1y2 + x1 + x2 + y0 + y1 + y2 + 1
0 0 0 0 0 0 0 0 x0y0 + x2y0 + x1 + x2 + y1 + 1
0 0 0 0 0 0 0 0 x2y1 + x0 + y1 + y2
0 0 0 0 0 0 0 0 x2y2 + x1 + y1 + 1
0 0 0 0 0 0 0 0 y0y1 + x0 + x2 + y0 + y1 + y2
0 0 0 0 0 0 0 0 y0y2 + x1 + x2 + y0 + y1 + 1
0 0 0 0 0 0 0 0 y1y2 + x2 + y0
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S-Box III

If you cannot be bothered to do that yourself, use Sage (http://www.sagemath.org):

sage: S = mq.SBox(7,6,0,4,2,5,1,3)
sage: S.polynomials ()
[x0*x2 + x1 + y1 + 1,
x0*x1 + x1 + x2 + y0 + y1 + y2 + 1,
x0*y1 + x0 + x2 + y0 + y2,
x0*y0 + x0*y2 + x1 + x2 + y0 + y1 + y2 + 1,
x1*x2 + x0 + x1 + x2 + y2 + 1,
x0*y0 + x1*y0 + x0 + x2 + y1 + y2 ,
x0*y0 + x1*y1 + x1 + y1 + 1,
x1*y2 + x1 + x2 + y0 + y1 + y2 + 1,
x0*y0 + x2*y0 + x1 + x2 + y1 + 1,
x2*y1 + x0 + y1 + y2 ,
x2*y2 + x1 + y1 + 1,
y0*y1 + x0 + x2 + y0 + y1 + y2,
y0*y2 + x1 + x2 + y0 + y1 + 1,
y1*y2 + x2 + y0]

If we post-process these polynomials (groebner=True), we get 21 quadratic equations

and one cubic equation for the S-Box which have a nice algebraic structure.
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Putting it all together

We have equations for the S layer, P layer and the key addtion.
�e key schedule is similar and has one/two S-boxes.

For each round we introduce 2 ⋅ 64 new state variables for the S layer.
Adding key schedule and key variables we get 132 ⋅Nr + 80 variables
On ther other hand, we get (22 ⋅ 16 + 22 + 64)Nr + 64 equations

# from http :// bitbucket.org/malb/algebraic_attacks/present.py
sage: attach present.py
sage: p = PRESENT(Nr=31)
sage: F,s = p.polynomial_system (); F
Polynomial System with 13642 Polynomials in 4172 Variables

Solving this system means recovering the key . . .
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Solver Families

In cryptography there are four families of algorithms which are usually used for

solving systems of equations.

In order of popularity for block ciphers:

1 SAT solvers: MiniSat2, CryptoMiniSat, (Raddum-Semaev, MRHS), . . .

2 Gröbner basis methods: Buchberger’s algorithm, F4 , F5 , . . .

3 Mixed Integer (Linear) Solvers: SCIP, CPLEX, Gurobi, . . .

4 Algebraic higher-order di�erential: AIDA, Cube attack, Cube Tester, . . .

It is very useful to understand a bit how these solvers work.

“We put our equations into Magma and it ran out of memory” is not a valid analysis.
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Gröbner Bases I
for Cryptographers

P = Fq[x0 , . . . , xn−1].
Fq is a �nite �eld of order q.
I is an ideal ⊂ P.�at is,

f , g ∈ I Ð→ f + g ∈ I and
f ∈ P, g ∈ I Ð→ f ⋅ g ∈ I .

⟨f0 , . . . , fm−1⟩ is the ideal spanned by f0 , . . . , fm−1 .
sage: P.<x,y,z> = PolynomialRing(GF(127), order=’deglex ’)
sage: I = ideal(x*y + z, y^3 + 1, z^2 - x*5 - 1)
sage: (x*y + z) + (y^3 + 1) in I
True
sage: x*z*(z^2 - x*5 - 1) in I
True
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Gröbner Bases II
for Cryptographers

A term order decides how we compare monomials, e.g., is xy or y3 bigger (degree
or variable �rst)?

sage: P.<x,y,z> = PolynomialRing(GF(127), order=’lex’)
sage: x*y > y^3
True
sage: P.<x,y,z> = PolynomialRing(GF(127), order=’deglex ’)
sage: x*y > y^3
False

M(f ) is the set of all monomials in f .
LM(f ) is the leading or largest monomial in f .
sage: P.<x,y,z> = PolynomialRing(GF(127), order=’deglex ’)
sage: f = x*y + x + 3
sage: f.lm()
x*y
sage: f.monomials ()
[x*y, x, 1]
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Gröbner Bases III
for Cryptographers

De�nition (Gröbner Basis)

Let I be an ideal of F[x0 , . . . , xn−1] and �x a monomial ordering. A �nite subset

G = {g0 , . . . , gm−1} ⊂ I

is said to be a Gröbner basis of I if for any f ∈ I there exists gi ∈ G such that

LM(gi) ∣ LM(f ).

Among other things Gröbner bases allow to solve (non-linear) systems of equations.

However, they are much more powerful objects than just that, as we will discuss at the

end of this talk.

Note

Gröbner bases generalise greatest common divisors over F[x] and row echelon forms
over Fn

.
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Gröbner Bases IV
for Cryptographers

As a warm-up, consider a linear system of equations over F127[x, y, z].

f = 26y + 52z + 62 = 0
g = 54y + 119z + 55 = 0
h = 41x + 91z + 13 = 0

f ′ = x + 29 = 0
g′ = y + 38 = 0
h′ = z + 75 = 0

⎛
⎜
⎝

0 26 52 62

0 54 119 55

41 0 91 13

⎞
⎟
⎠

⎛
⎜
⎝

1 0 0 29

0 1 0 38

0 0 1 75

⎞
⎟
⎠

�us, x = −29, y = −38 and z = −75 is a solution.

Note

Gaussian elimination iteratively reduces the leading terms:

LM(h) = x⇒ LM(h′) = z.
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Gröbner Bases V
for Cryptographers

Now consider two polynomials in F127[x, y, z] with term ordering deglex.

f = x2 + 2xy − 2y2 + 14z2 + 22z
g = x2 + xy + y2 + z2 + x + 2z

f = x2 + 4y2 − 12z2 + 2x − 18z
g′ = xy + −3y2 + 13z2 − x + 20z

(
1 2 −2 14 0 22

1 1 1 1 1 2
)

(
1 0 4 −12 2 −18
0 1 −3 13 −1 20

)

Gaussian elimination still “reduces” the system.
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Gröbner Bases VI
for Cryptographers

�is approach fails for

f = x2 − 2xy − 2y2 + 14z2 ,
g = x + y + 2z.

since x is not a monomial of f .

However, x divides two monomials of f : x2 and xy.

To account for those include multiplesm ⋅ g of g such that

LM(m ⋅ g) = m ⋅ LM(g) ∈M(f ).
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Gröbner Bases VII
for Cryptographers

f = x2 − 2xy − 2y2 + . . .
x ⋅ g = x2 + xy . . .
y ⋅ g = xy + y2 + . . .

g = x + y + 2z

f ′ = x2 + 4yz + 14z2 ,
h1 = xy + 2xz + −4yz − . . . ,
h2 = y2 − 2xz + 6yz + . . . ,
g = x + y + 2z

⎛
⎜
⎜
⎜
⎝

1 −2 −2 0 0 14 0 . . .

1 1 0 2 0 0 0 . . .

0 1 1 0 2 0 0 . . .

0 0 0 0 0 0 1 . . .

⎞
⎟
⎟
⎟
⎠

⎛
⎜
⎜
⎜
⎝

1 0 0 0 . . . 0 . . .

0 1 0 2 . . . 0 . . .

0 0 1 −2 . . . 0 . . .

0 0 0 0 . . . 1 . . .

⎞
⎟
⎟
⎟
⎠

Let’s call the preprocessing we performed “symbolic preprocessing” . . .but that alone

is still not enough to solve the system.
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Gröbner Bases VIII
for Cryptographers

Consider f = yx + 1 and g = zx + 2. Neither LM(f ) nor LM(g) divides any monomial
in the other polynomial. However, we have

zf − yg = z(yx + 1) − y(zx + 2),
= xyz + z − xyz − 2y,
= z − 2y.

We constructed multiples of f and g such that when we add them their leading terms
cancel out. In other words, we constructed an S-polynomial.
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Gröbner Bases IX
for Cryptographers

De�nition (S-Polynomial)

Let f , g ∈ F[x0 , . . . , xn−1] be non-zero polynomials.
Let xγ be the least common multiple of LM(f ) and LM(g), written as

xγ = LCM(LM(f ), LM(g)).

�e S-polynomial of f and g is de�ned as

S(f , g) =
xγ

LT(f )
⋅ f − xγ

LT(g)
⋅ g .

It is su�cient to consider onlymultiples coming from S-polynomials since any
reduction of leading terms can be attributed to S-polynomials.
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Gröbner Bases X
for Cryptographers

Input: F = [f0 , . . . , fm−1] – list of polynomials
Output: a Gröbner basis for ⟨f0 , . . . , fm−1⟩
begin1

while True do2

F ←multiply all pairs fi , fj ∈ F bymi ,mj such that LM(mifi) = LM(mjfj);3

F ← perform “symbolic preprocessing” on F ∪ F;4

F̃ ← peform Gaussian elimination on F ;5

F ← F ∪ {f ∈ F̃ with ∀g ∈ F we have LM(g) ∤ LM(f )};6

if F didn’t change in the last iteration then7

return F;8

end9

Algorithm 1: simpli�ed F4
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Gröbner Bases XI
for Cryptographers

Buchberger select one pair in line 3 and use polynomial division instead of

Gaussian elimination in line 5; implemented everywhere

F4 use Buchberger’s criteria in line 3 to avoid useless pairs (= zero rows

in the matrix); implemented in Magma, PolyBoRi, FGB

F5 use criteria in lines 3 and 4 such that all matrices have full rank

under some assumption; implementation worked on in Singular

(Mutant)XL multiply by everything up to some degree in line 3 and skip line 4

(worse than Algorithm 1 because of redundancies)

XSL make some choice in line 3 and line 4

(worse than Algorithm 1 because of wrong choice)

ElimLin always stay at degree 2 using change of ordering

(exact relationship to Algorithm 1 unclear)
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SAT Solvers I

# from http ://bit.ly/hO022y
sage: attach "anf2cnf.py"
sage: B.<a,b> = BooleanPolynomialRing ()
sage: aa = ANFSatSolver(B)
sage: print aa.cnf([a*b + b + 1])
p cnf 3 5
c ------------------------------
c Next definition: a*b + b + 1
-3 -2 0
3 2 0
c ------------------------------
c Next definition: a*b
1 -3 0
2 -3 0
3 -1 -2 0

begin1

while True do2

simplify clauses;3

if contradiction then4

backtrack;5

if solution then6

return;7

guess something;8

end9

Gregory V. Bard, Nicolas T. Courtois, and Chris Je�erson.

E�cient Methods for Conversion and Solution of Sparse Systems of Low-Degree

Multivariate Polynomials over GF(2) via SAT-Solvers.

Cryptology ePrint Archive, Report 2007/024, 2007.
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SAT Solvers II

SAT solvers decide satis�ability, hence they will terminate once one solution is
found.

SAT solvers are randomised: one success does not constitute an average running

time.

Run hundreds/thousands of experiments with lots of re-randomisation.

�e conversion from ANF to CNF can make a huge di�erence, try Mate Soos’

http://gitorious.org/anfconv.

Di�erent solvers behave di�erently, try Mate Soos’ CryptoMiniSat.

Martin R. Albrecht — Algebraic Techniques in Cryptanalysis 29/46
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Mixed Integer Programming I

MIP minimises (or maximises) a linear function cTx subject to linear equality
and inequality constraints given by linear inequalities Ax ≤ b.
We restrict some variables to integer values while others may take any real values.

�e main advantage of MIP solvers compared to other branch-and-cut solvers

(SAT solvers etc.) is that they can relax the problem to an (easy) �oating point

problem.

�is allows to obtain lower and upper bounds for cTx which can be used to cut
search branches.

�e non-linear generalisation is called Constraint Integer Programming (CIP).

CPLEX & Gurobi (accademic licenses available), SCIP (≈ open-source)
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Mixed Integer Programming II

We can convert a polynomial f ∈ F2[x0 , . . . , xn−1] to MIP and then use an
o�-the-shelf MIP solver (in this example SCIP).

sage: from sage.libs.scip.scip import SCIP
sage: B.<a,b,c> = BooleanPolynomialRing ()
sage: f = a*c + a + b + c + 1
sage: s = SCIP(maximization=False ,name="ecrypt2")
sage: s
SCIP Constraint Integer Program "ecrypt2"
( minimization , 0 variables , 0 constraints )
sage: s.read_polynomial_system_mod2(Sequence ([f])); s
down: {b: 1, c: 0, a: 2}

up: {0: c, 1: b, 2: a}
SCIP Constraint Integer Program "ecrypt2"
( minimization , 4 variables , 2 constraints )

Julia Borgho�, Lars R. Knudsen, and Mathias Stolpe.

Bivium as a Mixed-Integer Linear programming problem.

In Matthew G. Parker, editor, Cryptography and Coding – 12th IMA International
Conference, volume 5921 of Lecture Notes in Computer Science, pages 133–152, Berlin,
Heidelberg, New York, 2009. Springer Verlag.
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Cube Attacks and Friends I

2008 – the buzz:

“At this moment, Adi Shamir is giving an invited talk at the Crypto 2008
conference about a new type of cryptanalytic attack called ‘cube attacks.’ He
claims very broad applicability to stream and block ciphers. My personal joke
– at least I hope it’s a joke – is that he’s going to break every NIST hash
submission without ever seeing any of them.”

– Bruce Schneier

2009 – the criticism:
“Why haven’t cube attacks broken anything? Is there some secret reason that
every real-world cipher resists cube attacks? It turns out that the answer is
yes.”

– Dan Bernstein

2011 – it is not all bad:

It seems these kind of techniques perform well for some

hash functions and stream ciphers.
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Cube Attacks and Friends II

�e Cube attack is essentially a higher-order di�erential attack:

sage: B.<v1,v2 ,v3,x1 ,x2,x3> = PolynomialRing(GF(2))
sage: f = v1*v2*v3 + v1*v2*x1 + v1*v3*x1 + v2*v3*x1 + v1*v2*x3 \

+ v1*v3*x2 + v2*v3*x2+ v1*v3*x3 + v1*x1*x3 + v3*x2*x3 \
+ x1*x2*x3 + v1*v2 + v1*x3 + v3*x1 + x1*x2 + x2*x3 \
+ x2 + v1 + v3 + 1

sage: f.derivative(x1,x3)
v1 + x2

However, the derivation is performed “numerically” instead of symbolically:

sage: g = 0
... for v in VectorSpace(GF(2) ,2):
... g += f.subs(x1=v[0],x3=v[1])
sage: g
v1 + x2

�is family of techniques seems to perform reasonably well for some hash functions

and some stream ciphers.
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Performance

Cipher Method System RAM Wall time

4r 4-bit AES MRHS ??? 1 GB 0.032s

10r 4-bit AES MRHS ??? 1 GB 0.32s

10r 4-bit AES GB Opteron 2.2 Ghz 16 GB 0.02s

10r 8-bit AES GB Opteron 2.2 Ghz 16 GB 0.2s

10r 16-bit AES GB Opteron 2.2 Ghz 16 GB 1205s

4r DES ElimLin Centrino 1.6 Ghz ??? GB 2
19 ⋅ 8s

5r DES ElimLin Centrino 1.6 Ghz ??? GB 2
23 ⋅ 173s

6r DES SAT Centrino 1.6 Ghz ??? GB 2
20 ⋅ 68s

Present-80-2 SCIP i7 2.6 Ghz 4 GB 3100s

Present-80-5 ElimLin ??? 2.0 Ghz 1 GB 7200s

Table: Reported runtimes of various algorithms against reduced ciphers.
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Beyond Solving I

Consider an arbitrary function f ∶ Fn
2 → Fm

2 and its polynomial representation

f0 , . . . , fm−1
Let x0 , . . . xn−1 be the input variables and y0 , . . . , ym−1 the output variables
Consider the ideal I = ⟨f0 , . . . , fm−1⟩:

Every member g of this ideal is a combination of f0 , . . . , fm−1 .
If f0 , . . . , fm−1 vanish, so does g.
�is can be read as: f0 , . . . , fm−1 implies g.

“If f0 , . . . , fm−1 hold, so does g”.
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Beyond Solving II

Let c be a condition on the input variables (in polynomial form).
Calculate a Gröbner basis for ⟨c, f0 , . . . , fm−1⟩ in an elimination ordering which
eliminates input variables �rst.

�e smallest elements of this Gröbner basis will be polynomials with a

minimum number of input variables (if possible, none). Call them g0 , . . . , gr−1 .
�ese polynomials are implied by the polynomials f0 , . . . , fm−1 and the condition
c.

“If f0 , . . . , fm−1 and the condition c hold, so do g0 , . . . , gr−1”
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Beyond Solving III

All on the output bits that are implied by f under condition c are combinations
of g0 , . . . , gr−1
If we pick the term ordering right, g0 , . . . , gr−1 have minimal degree.

For a given function f under a precondition c we can calculate all conditions on the
output bits thatmust hold.
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Beyond Solving IV

Some example applications:

Di�erential: algebraic description of all possible output di�erences under some

input di�erence.

Cond. Di�.: conditional relations on the plaintext and the key bits.

Integral: algebraic descriptions on the output bits a�er r rounds.

Martin Albrecht, Carlos Cid,�omas Dullien, Jean-Charles Faugère, and Ludovic Perret.

Algebraic precomputations in Di�erential and Integral Cryptanalysis.

In INSCRYPT 2010 – Information Security and Cryptology 6th International Conference,
Lecture Notes in Computer Science, 18 pages, October 2010.
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Algebraic Techniques and Di�erential Cryptanalysis I
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Algebraic Techniques and Di�erential Cryptanalysis II
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Algebraic Techniques and Di�erential Cryptanalysis III

1 Pick your favourite di�erential characteristic which holds with probability p.
2 Construct an equation system for two pairs P′ ⇒ C′ and P′′ = P′ + ∆P⇒ C′′.
3 Add linear equations of the form X′i,j + X′′i,j = ∆Xi,j and Y ′i,j + Y ′′i,j = ∆Yi,j

4 Attempt to solveO(1/p) such systems to get one that has a solution.

Cipher System RAM pairs time

Present-80-14 C2D 2.33 Ghz 4 GB ≈ 244 2
72.60

CPU cycles

Present-80-15 2.4 Ghz 64 GB ≈ 259 2
73.79

encryptions

Present-128-14 2.4 Ghz 64 GB ≈ 255 2
112.83

encryptions

Present-128-17 C2D 2.33 Ghz 4 GB ≈ 262 2
43.70 ⋅ t CPU cycles∗

KTANTAN32-113 C2D 2.33 Ghz 4 GB ≈ 231 2
64
CPU cycles

* this is a successful attack if t < 289 .�ere is no consensus whether this is plausible.
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A more general perspective

We can view the algebraic-di�erential approach as a special case of:

Find some property which holds with some probability p a�er r rounds (under
some chosen inputs)

Setup a smaller equation system which relates the property to the output

Attempt to solve the smaller systemO(1/p) times.
For this smaller equation system we have very few “plaintext-ciphertext” pairs,

hence algebraic techniques seem to �t well.

Nicolas T. Courtois, Gregory V. Bard and David Wagner.

Algebraic and Slide Attacks on KeeLoq

In Fast So�ware Encryption – FSE 2008, pages 97–115, Berlin, Heidelberg, New York, 2008.
Springer Verlag

Nicolas T. Courtois.

Security Evaluation of GOST 28147-89 In View Of International Standardisation,

In Cryptology ePrint Archive, Report 2011/211, 2011

Martin R. Albrecht — Algebraic Techniques in Cryptanalysis 43/46



Introduction Equations Solvers Advanced Techniques

Algebraic Techniques and Integral Cryptanalysis

In Integral or Higher-Order Di�erential Cryptanalysis the attacker encrypts plaintexts

with some structure such that the output (a�er some rounds) also has some

(algebraic) structure.

We can use algebraic techniques �nd such algebraic relations (cf. Beyond Solving).

Cipher Method #P Wall time

Present-80-5 HODC 5 ⋅ 24 ≈ 225.7 CPU cycles
Present-80-5 AHODC 2

4 ≈ 223.3 CPU cycles
Present-80-6 HODC 2

22.4 ≈ 241.7 CPU cycles
Present-80-6 AHODC 2

20 ≈ 239.3 CPU cycles
Present-80-7 HODC 2

24.4 ≈ 2100.1 CPU cycles
Present-80-7 AHODC 2

21.9 ≈ 297.8 CPU cycles

KTANTAN32-65 AHODC 2
5

59004.10 s

Martin R. Albrecht — Algebraic Techniques in Cryptanalysis 44/46



Introduction Equations Solvers Advanced Techniques

Algebraic Techniques and Side-Channel Cryptanalysis

Side-channel attacks provide information about the internal state of an

encryption operation to the attacker.

�is information can then be used to recover key information.

Algebraic techniques seem to be natural candidates for this task, because they

are good for tracking/propagating dependencies.

Mathieu Renauld and Francois-Xavier Standaert.

Algebraic Side-Channel Attacks.

In INSCRYPT 2009 – Information Security and Cryptology 5th International Conference,
volume 6151 of Lecture Notes in Computer Science, pages 393-410, Berlin, Heidelberg, New
York, 2009. Springer Verlag.

Martin Albrecht and Carlos Cid.

Cold Boot Key Recovery by Solving Polynomial Systems with Noise

To appear in ACNS 2011 – 9th International Conference on Applied Cryptography and
Network Security, in Lecture Notes in Computer Science, Berlin, Heidelberg, New York,
2011. Springer Verlag.
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Questions?

�ank You!
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