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Abstract. The computation of Gröbner bases remains one of the most powerful methods
for tackling the Polynomial System Solving (PoSSo) problem. The most efficient known
algorithms reduce the Gröbner basis computation to Gaussian eliminations on several ma-
trices. However, several degrees of freedom are available to generate these matrices. It is
well known that the particular strategies used can drastically affect the efficiency of the
computations. In this work we investigate a recently-proposed strategy, the so-called “Mu-
tant strategy”, on which a new family of algorithms is based (MXL, MXL2 and MXL3). By
studying and describing the algorithms based on Gröbner basis concepts, we demonstrate
that the Mutant strategy can be understood to be equivalent to the classical Normal Se-
lection strategy currently used in Gröbner basis algorithms. Furthermore, we show that the
“partial enlargement” technique can be understood as a strategy for restricting the number
of S-polynomials considered in an iteration of the F4 Gröbner basis algorithm, while the new
termination criterion used in MXL3 does not lead to termination at a lower degree than the
classical Gebauer-Möller installation of Buchberger’s criteria. We claim that our results map
all novel concepts from the MXL family of algorithms to their well-known Gröbner basis
equivalents. Using previous results that had shown the relation between the original XL
algorithm and F4, we conclude that the MXL family of algorithms can be fundamentally
reduced to redundant variants of F4.

1 Introduction

Solving systems of multivariate polynomial equations is a fundamental problem arising on a variety
of scientific fields, such as cryptography, robotics, biology, error correcting codes, signal theory,
among others. One of the most popular and powerful methods for solving systems of equations is
the computation of Gröbner bases. A Gröbner basis is a particular set of generators of an ideal
in the polynomial ring. Such basis can be used to find the solutions of the system of equations
associated with the ideal (i.e. the corresponding variety). The concept of Gröbner basis and the
first algorithm for their computation were introduced in Buchberger’s seminal work [8], giving rise
in the past decades to an extraordinarily active area of research in computer algebra.

Although Buchberger’s original proposal provided a powerful algorithmic tool for solving systems
of equations, it was not particularly suitable for solving large systems arising in applications. Much
work in subsequent decades concentrated on the investigation of algorithmic and implementation
strategies to speed up the computation of Gröbner bases. The most efficient algorithms currently
known, namely the F4 and F5 algorithms [20, 21], reduce the Gröbner basis computation to a
sequence of Gaussian eliminations on several particular matrices. These methods were motivated
by the seminal work of Lazard [27]. He first made the link between the computation of a Gröbner



basis of an ideal and linear algebra operations on the corresponding Macaulay matrix. We note
however that in all linear algebra-based Gröbner basis methods, several degrees of freedom are
available to the designer and implementer of the algorithm to generate these matrices, and it is
well known that the particular strategies selected can drastically affect the efficiency and running
times of the computations.

The past few years have witnessed a growing interest from the cryptographic community in com-
putational algebra methods, in particular Gröbner basis algorithms. This was motivated by the
proposal of algebraic attacks against stream ciphers [12] and block ciphers [16, 26, 1, 2], as well
as by the proposal of several public-key schemes based on systems of multivariate polynomial
equations (e.g. [33]), and the corresponding cryptanalysis using the F5 algorithm [24, 34, 25, 22, 6].
One particular algorithm has received considerable attention from the cryptographic community:
the XL algorithm [14] (and its several variants, e.g. [15, 16, 13]) was originally proposed to tackle
problems arising specifically from cryptology. Although not strictly a Gröbner basis algorithm, it
used a similar idea to the one proposed by Lazard: it constructs the Macaulay matrix up to some
large degree D and reduces it to obtain the solution of the system. The algorithm was shown to
work only under particular conditions [18], while other flaws were also shown in other high-profile
variants [11, 28]. Eventually, and perhaps unsurprisingly, it was shown that the XL algorithm could
be described essentially as a redundant (and less efficient) variant of the F4 algorithm [3].

Yet, despite of these well-known results, the XL algorithm continues somehow to attract the
attention of researchers working in cryptography [10, 35]. Perhaps because of its simplicity, it
remains an attractive method for one to propose improvements and/or implementation tricks and
strategies. However, many of (if not all) these proposals can be eventually described based on
well-known Gröbner bases concepts and implementation techniques, such as S-polynomials and
their selection strategies. These are in turn unsurprisingly often already present in many efficient
linear algebra-based Gröbner basis algorithms and implementations.

In this paper we investigate a prominent recent addition to the XL family, namely the MutantXL
algorithms [10, 31, 30, 9]. The concept of Mutants was first introduced in [10], giving rise to a family
of algorithms and techniques [31, 30, 9], which showed to be particularly efficient against the MQQ
multivariate cryptosystem [32]. Unlike the XL algorithm, some of the Mutant algorithms (e.g.
MXL3 [30]) do in fact explicitly compute the Gröbner basis of the corresponding ideal, assuming
it is zero-dimensional. Because of the remarkable experimental results reported in [30], a natural
question arises: how do we describe mutants in terms of commutative algebra? Are mutants a new
concept, or can it be described based on a well-known computational algebra concept? Likewise,
are the new mutant strategies general enough, so that they can potentially be incorporated to
existent Gröbner basis algorithms? To the authors’ best knowledge, there has been so far no in-
depth study of the mathematical properties of mutants and related strategies, and how they are
connected to other Gröbner basis algorithms.

In this work, we undertake this task. In particular, we compare the MXL family with two variants of
the F4 algorithm: first, the so-called simplified F4 which does not use Buchberger’s criteria to avoid
useless reductions to zero and second, the full F4 as specified in [20]. Considering these algorithms,
we show that the Mutant strategy can be understood as essentially equivalent to the Normal
Selection strategy as used in Gröbner basis algorithms, such as F4. Based on previous results,
which showed the relation between the XL algorithm and F4 [3], we conclude that MXL can too
be described as a redundant variant of F4. Furthermore, we also study the “partial enlargement”
strategy proposed in [31] and demonstrate that it corresponds to selecting a subset of S-polynomials
in Gröbner basis algorithms. As a result, we conclude that MXL2 can also be described as a variant
of F4, although a variant that diverges from known approaches about how to select the number of
S-polynomials in each iteration. Finally, we consider the new termination criterion proposed in [30]
and demonstrate that it does not lead to a lower degree of termination than using Buchberger’s



criteria to remove useless pairs in a Gröbner basis algorithm. As a result, we reach the conclusion
that MXL3 can be reduced to a redundant variant of the full F4 algorithm.

The remaining of this work is organised as follows. In Section 2 we recall the well-known XL
algorithm, and re-state the result showing the relation between Xl and F4. In Section 3 we review
well-known statements from commutative algebra. We place particular emphasis on the concept
of S-polynomials and the central role they play in Gröbner bases computations. In particular, we
review the fact that in XL-style algorithms any multiplication of polynomials by monomials except
for those giving rise to S-polynomials is in essence redundant. In Section 4 we review the definition
of Mutants, and present our pseudocode for the MXL3 algorithm. In Section 5 we state and prove
our main result, namely that the Mutant strategy is a redundant variant of the Normal Selection
strategy. We also treat partial enlargement and the termination condition of MXL3 in Section 5.
We conclude in Section 6, where we include a brief discussion on what we view as the limitations
of using running times as the sole basis for comparison between Gröbner basis algorithms.

2 The XL Algorithm

In this section we briefly recall the well-known XL algorithm. An iterative variant of the algorithm
is given in Algorithm 1. We adopt the notation from [30] and, given a set of polynomials S, we
denote by S(op)d the subset of S with elements of degree (op)d where (op) ∈ {=, <,≤, >,≥}.

Input: F – a polynomial system of equations
Input: D – an integer > 0
Result: a D-Gröbner basis for F
begin1

G←− ∅;2

for 1 ≤ d ≤ D do3

F=d ←− ∅;4

for f ∈ F do5

if deg(f) = d then6

add f to Fd;7

else if deg(f) < d then8

M=d−deg(f) ←− all monomials of degree d− deg(f);9

for m ∈M=d−deg(f) do10

add m · f to F=d;11

G←− G ∪ the row echelon (or the matrix) form of F=d;12

return G13

end14

Algorithm 1: XL

It was shown in [3] that the XL algorithm can be emulated using the F4 algorithm. In particular,
[3] proves that:

Lemma 1. Algorithm 1 can be simulated using F4 (described in Algorithm 3) by adding redundant
pairs.



3 Gröbner Bases Basics

In this section we recall some basic results about Gröbner bases. For a more detailed treatment,
we refer to, for instance, [17]. Consider a polynomial ring R = F[x0, . . . , xn−1] over some field
F. We adopt some admissible ordering on monomials in R. We can then denote by LM(f) the
largest or leading monomial appearing in f ∈ R and by LC(f) ∈ F the coefficient corresponding to
LM(f) in f . By LT(f) we denote LC(f) ·LM(f). In this work LV(f) denotes the largest variable
– ordered w.r.t. the monomial ordering – in the leading monomial LM(f) of f , and given a set
F ⊂ R, we define LV(F, x) as {f ∈ F | LV(f) = x}. The set of leading monomials of F is defined
as LM(F ) = {LM(f) | f ∈ F}, M denotes the set of all monomials in R, while M(F ) is the set
of all monomials appearing in any polynomial in F .

The ideal I generated by f0, . . . , fm−1 ∈ R, denoted 〈f0, . . . , fm−1〉, is defined as{
m−1∑
i=0

hifi | h0, . . . , hm−1 ∈ R

}
.

It is known that every ideal I ⊆ R is finitely generated.

A Gröbner basis of an ideal I is a particular set of generators.

Definition 1 (Gröbner Basis). Let I be an ideal of F[x0, . . . , xn−1] and fix a monomial ordering.
A finite subset

G = {g0, . . . , gm−1} ⊂ I

is said to be a Gröbner basis of I if for any f ∈ I there exists gi ∈ G such that LM(gi) | LM(f).

We note that if a system of polynomials f0, . . . , fm−1 has a unique root, i.e. the system of equa-
tions f0 = 0, . . . , fm−1 = 0 has a unique solution, then computation of the Gröbner basis of the
corresponding ideal allows one to solve the system (i.e. the solution can be “read” directly on the
Gröbner basis). More generally, if the ideal is zero-dimensional, the solutions of a system can be
computed from a Gröbner basis in polynomial-time (in the number of solutions) [23].

Since the notion of Gröbner bases is defined by the existence of relatively small leading terms, the
task of computing a Gröbner basis is essentially to find new elements in the ideal with smaller
leading terms until no more such elements can be found. Buchberger proved in his PhD thesis [8]
that Gröbner bases can be computed by considering only S-polynomials. Such polynomials are
designed to cancel leading terms and thus potentially produce new elements in the ideal with
lower leading terms.

Definition 2 (S-Polynomial). Let f, g ∈ F[x0, . . . , xn−1] be non-zero polynomials.

– Let LM(f) =
∏n−1
i=0 x

αi
i and LM(g) =

∏n−1
i=0 x

βi
i , with αi, βi ∈ N, denote the leading monomials

of f and g respectively. Set γi = max(αi, βi) for every 0 ≤ i < n, and denote by xγ =∏n−1
i=0 x

γi
i . It holds that xγ is the least common multiple of LM(f) and LM(g), written as

xγ = LCM(LM(f),LM(g)).

– The S-polynomial of f and g is defined as

S(f, g) =
xγ

LT(f)
· f − xγ

LT(g)
· g.



Now let G = {g0, . . . , gs−1} ⊂ R, and I be the ideal generated by G. We say that a polynomial f ∈
I has a standard representation w.r.t. G if there exist constants a0, . . . , as−1 ∈ F and monomials
m0, . . . ,ms−1 ∈M such that

f =

s−1∑
k=0

aktkgk,

with LM(tkgk) ≤ LM(f). Buchberger’s main result stated that G is a Gröbner basis for I if and
only if every S-polynomial S(gi, gj) has a standard representation w.r.t. G.

Furthermore, Buchberger showed that in the computation of Gröbner bases it is sufficient to con-
sider S-polynomials only, since any reduction of leading terms can be attributed to S-polynomials.
There are many variants of this result in textbooks on commutative algebra; we give below the
statement and proof based on [17] since the presentation helps to understand the close connection
between XL and Gröbner basis algorithms. The proof is included for the sake of completeness.

Lemma 2. Let f0, . . . , ft−1 be nonzero polynomials in R. Given a monomial xδ, let xα(0), . . .,
xα(t−1) be monomials in R such that xα(i) LM(fi) = xδ for all i = 0, . . . , t − 1. We consider the
sum f = Σt−1

i=0 cix
α(i)fi, where c0, . . . , ct−1 ∈ F\{0}. If LM(f) < xδ, then there exist constants

bj ∈ F such that

f =

t−1∑
i=0

cix
α(i)fi =

t−2∑
j=0

bjx
δ−τj S(fj , fj+1), (1)

where xτj = LCM(LM(fj),LM(fj+1)). Furthermore

xδ−τjS(fj , fj+1) < xδ, for all j = 0, . . . , t− 2.

Proof. We denote by LM(fi) = xβ(i). Thus, α(i) + β(i) = δ. Then let di = LC(fi). It follows

that cidi is the leading coefficient of cix
α(i)fi. Furthermore, let pi = xα(i)fi

di
and thus LC(pi) = 1.

Consider the “telescope sum”:

f =

t−1∑
i=0

cix
α(i)fi =

t−1∑
i=0

cidi
xα(i)fi
di

=

t−1∑
i=0

cidipi

=

t−1∑
i=0

 i∑
j=0

cjdj −
i−1∑
j=0

cjdj

 pi

=

t−1∑
i=0

i∑
j=0

cjdjpi −
t−2∑
i=−1

i∑
j=0

cjdj pi+1

=

t−1∑
j=0

cjdjpt−1 +

t−2∑
i=0

i∑
j=0

cjdj(pi − pi+1).

All cix
α(i)fi have xδ as leading monomial. Since their sum has smaller leading monomial, we have

that Σt−1
i=0 cidi = 0, leading to:

f =

t−2∑
i=0

i∑
j=0

cjdj(pi − pi+1). (2)



By assumption xα(i) LM(fi) = xδ for all i = 0, . . . , t− 1, and we have:

xδ−τjS(fj , fj+1) = xδ−τj
(

xτj

LT(fj)
fj −

xτj

LT(fj+1)
fj+1

)
=
xα(j)

dj
fj −

xα(j+1)

dj+1
fj+1

= pj − pj+1.

This is now plugged into the telescope sum (2) leading to:

f =

t−2∑
i=0

i∑
j=0

cjdjx
δ−τiS(fi, fi+1)

=

t−2∑
i=0

(i+ 1)cjdjx
δ−τiS(fi, fi+1)

=

t−2∑
i=0

bjx
δ−τiS(fi, fi+1),

with bj = (i + 1)cjdj . Since the polynomials pj and pj+1 have leading monomial xδ and leading
coefficient 1, the difference pj − pj+1 has a smaller leading monomial. Since we have that pj −
pj+1 = xδ−τjS(fj , fj+1), this claim also holds true for xδ−τjS(fj , fj+1). Thus the Lemma holds.

ut

The following corollary is a simple generalisation of Lemma 2 to sums where not all summands
have the same leading term.

Corollary 1. Let f0, . . . , ft−1 be polynomials in R. Consider the polynomial f as the sum f =
Σt−1
i=0 cix

α(i)fi, with coefficients c0, . . . , ct−1 ∈ F\{0}, such that LM(f) < xδ = max{xα(i)LM(fi)}.
Without loss of generality, we can assume that there is a t̃ such that xα(j)LM(fj) = xδ for j < t̃
and xα(k)LM(fk) < xδ for k ≥ t̃. Then there exist constants bj ∈ F such that

f =

t̃−2∑
j=0

bjx
δ−τjS(fj , fj+1) +

t−1∑
k=t̃

ckx
α(k)fk

=
∑

c̃ix
α̃(i)f̃i,

where xτj = LCM(LM(fj),LM(fj+1)). Furthermore, for all 0 ≤ j ≤ t̃− 2, we have

LM(xδ−τjS(fj , fj+1)) < xδ

and thus
xα̃(i)LM(f̃i) < xδ for all i.

Corollary 1 states that whatever cancellations can be produced by monomial multiplications and F-
linear combinations, they can be attributed to S-polynomials. It follows that the only cancellations
that need to be considered in a XL-style algorithm are those produced by S-polynomials.

Example 1. Consider the polynomials f = xy + x + 1, g = x + 1 and h = z + 1 ∈ F127[x, y, z].
We fix the degree reverse lexicographical term ordering. To compute a Gröbner basis, we start by
constructing two S-polynomials of degree two, namely: f − yg = x− y + 1 and zg − yh = −x+ z.
In matrix notation, we would thus have to consider the six rows corresponding to f, yg, zg, yh, g
and h.

For comparison, XL would consider the following polynomials up to degree two.



f = xy + x+ 1, xg = x2 + x, yg = xy + y,
zg = xz + z, xh = xz + x, yh = yz + y,
zh = z2 + z, g = x+ 1, h = z + 1.

In matrix notation we have

A =



0 1 0 0 0 1 0 0 1
1 0 0 0 0 1 0 0 0
0 1 0 0 0 0 1 0 0
0 0 1 0 0 0 0 1 0
0 0 1 0 0 1 0 0 0
0 0 0 1 0 0 1 0 0
0 0 0 0 1 0 0 1 0
0 0 0 0 0 1 0 0 1
0 0 0 0 0 0 0 1 1


and E =



1 0 0 0 0 0 0 0 −1
0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 −1
0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 −1
0 0 0 0 0 1 0 0 1
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 1
0 0 0 0 0 0 0 0 0


,

where E is the reduced row echelon form of A. Thus, this system has rank eight. Yet, we know
from Corollary 1 that six rows (f, yg, zg, yh, g, h) would have been sufficient. Additionally, from
Buchberger’s first criterion [17] we know that in fact only the four rows f, yg, g, h need to be
considered since the leading terms of g and h are coprime. Thus, in addition to the row that reduces
to zero (as predicted by Buchberger’s first criterion) the matrix constructed by XL contains four
rows which are redundant even though they do not reduce to zero. Conversely, any reduction
that produced a new lower leading term in the matrix constructed by XL could be attributed to
S-polynomials.

Note that Lemma 2 does not state that LM(f) = max{LM(S(fj , fj+1))}, but rather that the
leading terms of summands decrease once rewritten using S-polynomials. In the following example,
we consider the case when LM(f) < max{LM(S(fj , fj+1))}. In this case, we can reapply Lemma 2
to f ′i = S(fi, fj) as the following example emphasizes.

Example 2. Consider the polynomials f = xy + a, g = yz + b, and h = ab + 1 in the polynomial
ring F127[x, y, z, a, b]. We consider the degree reverse lexicographical term ordering. Only one S-
polynomial does not reduce to zero: s0 = zf − xg = za − xb. From s0 we can then construct
s1 = bs0 − zh = xb2 + z, among others, also at degree 3, which is an element of the reduced
Gröbner basis. The XL algorithm at degree 3 will produce

{m · p | m ∈ {1, x, y, z, a, b}, p ∈ {f, g, h}},

which reduces to

x2y + xa, xy2 + ya, xyz + xb, y2z + yb,
yz2 + zb, xya+ a2, yza− 1, xyb− 1,
yzb+ b2, xab+ x, yab+ y, zab+ z,
a2b+ a, ab2 + b, xy + a, yz + b,
za− xb, and ab+ 1



by Gaussian elimination. Note that xb2 + z is not in that list. However, if we increase the degree
of XL to 4, the list returned is

x3y + x2a, x2y2 − a2, xy3 + y2a, x2yz + x2b,
xy2z + 1, y3z + y2b, xyz2 + xzb, y2z2 − b2,
yz3 + z2b, x2ya+ xa2, xy2a+ ya2, xyza− x,
y2za− y, yz2a− z, xya2 + a3, yza2 − a,
x2yb− x, xy2b− y, xyzb− z, y2zb+ yb2,
yz2b+ zb2, x2ab+ x2, xyab− a, y2ab+ y2,
xzab+ xz. yzab− b, z2ab+ z2, xa2b+ xa,
ya2b+ ya, za2b+ xb, a3b+ a2, xyb2 − b,
yzb2 + b3, xab2 + xb, yab2 + yb, zab2 + zb,
a2b2 − 1, ab3 + b2, x2y + xa, xy2 + ya,
xyz + xb, y2z + yb, yz2 + zb, xya+ a2,
xza− x2b, yza− 1, z2a− xzb, za2 + x,
xyb− 1, yzb+ b2, xab+ x, yab+ y,
zab+ z, a2b+ a, xb2 + z, ab2 + b,
xy + a, yz + b, za− xb and ab+ 1,

which does contain xb2 + z. Thus, XL did produce xb2 + z in one step at degree 4 but it could not
produce xb2 + z at degree 3 since this element corresponds to

b(zf − xg)− zh = (bz)f − (bx)g − zh,

but we have that deg(bzf) = 4. Note that this behaviour of XL is the motivation for the Mutant
concept.

4 Mutants and MXL algorithms

Let F = {f0, . . . , fm−1} ⊂ F[x0, . . . , xn−1], and I = 〈f0, . . . , fm−1〉 be the ideal generated by F .
Recall that any element f ∈ I can be written as

f =

m−1∑
i=0

hi · fi, with hi ∈ F[x0, . . . , xn−1].

Note that this representation is usually not unique. Following the terminology of [10], we call the
level of the representation

∑
fi∈F hi · fi of f the maximum degree of {hi · fi | fi ∈ F}. We call

the level of f the minimal level of all its representations. We can then define the concept of a
mutant [10, 31, 30].

Definition 3. Given a set of generators F of an ideal I, a polynomial f ∈ I is a mutant if its
total degree is strictly less than its level.

A mutant corresponds to a “low-degree” relation occurring during XL or more generally during
any Gröbner basis computation. It follows from the discussion in Section 3 that, in the language of
commutative algebra, a mutant occurs when a S-polynomial has a lower-degree leading monomial
after reduction by F and if this new leading monomial was not in the set LM(F ) before reduction.

The concept of mutant has recently motivated the proposal of a family XL-style algorithms [10,
31, 30, 9]. We discuss below the most prominent, namely the MXL3 algorithm.



4.1 MXL3 Algorithm

The MXL family of algorithms improves the XL algorithm using the mutant concept. In particular,
the MXL3 differs from XL in the following respects:

1. Instead of “blindly” increasing the degree in each iteration of the algorithm, the MXL algo-
rithms treat mutants at the lowest possible degree, (cf. line 12 in Algorithm 2). This is the
key contribution of the MXL algorithm [10].

2. Instead of considering all elements F=d of the current degree d, MXL3 only considers a subset
of elements per iteration. It incrementally adds more elements of the current degree, if the
elements of the previous iteration did not suffice to solve the system (cf. line 27 in Algorithm 2).
This is called partial enlargement in [31, 30]. This is the key contribution of the MXL2 algorithm
[31].

3. XL terminates at the user-provided degree D, while MXL3 does not require to fix a degree a
priori. Instead, the algorithm will terminate once a Gröbner basis was found using some new
criterion (cf. line 21 in Algorithm 2). This is the key contribution of the MXL3 algorithm [30].

In Algorithm 2 we present pseudocode for a slightly simplified variant of the MXL3 algorithm. We
use this presentation in Section 5 to compare it with the F4 algorithm.

Our pseudocode has some minor differences with the pseudocode presented in [30]; we list these
below:

Partial enlargement. We disregard any partial enlargement strategy in the case when mutants
were found. This matches the pseudocode in [30]. However, the actual implementation of
MXL3 does indeed use the partial enlargement when Mu 6= ∅ (i.e. mutants exist) [29]. We
note that our pseudocode and that in [10] are equivalent to MXL [10] in this case. Since our
work is mainly concerned with the concept of mutants, maintaining this simplification seems
appropriate.

Choice of y. In line 14 we set y to max{LV(f) | f ∈ F≤k+1} instead of max{LV(f) | f ∈Mu=k}
since this allows reductions among all elements of degree k+1 instead of only those in Mu=k+1.
Restricting reduction to the elements of Mu=k+1 could lead to incomplete reductions and thus
results. The actual implementation of MXL3 uses “partial enlargement” in this step and thus
increases y iteratively [29].

Incomplete reductions. In line 28 we removed the optimisation that only variables ≤ x are
used for multiplication in the extension step. This optimisation can lead to an incorrect result
as some reductions are never performed. As an example, consider f = ab + 1, g = bc + a + b
and h = c. The reduced Gröbner basis of the ideal 〈f, g, h〉 over F2[a, b, c] with respect to a
degree lexicographical term ordering is {a+ 1, b+ 1, c}. However, the pseudocode of MXL3 as
described in [30] will not perform the necessary reductions. The leading variable of h is c, thus
h ∈ LV(F, c) and h is never extended using any variables except c since a > c and b > c.
Furthermore, the S-polynomial S(f, g) = cf − ag = (abc + c) − (abc + ab + a) = ab + a + c
is not constructed since ag requires multiplication of g in LV(F, b) by a but a > b. Thus, on
termination the output of MXL3 is not a Gröbner basis.
Our change matches Proposition 3 from [30], which requires that for H ←− {t · g | g ∈
G, t a term and deg(t · g) ≤ D + 1} the reduced row echelon form of H is G. However, this
property is not enforced by MXL3 as presented in pseudocode in [30], since some t · g are
prohibited from being constructed if deg(t) = 1 and t > LV(g). We confirmed with the
authors of [30] that their implementation catches up on those missing multiplications when
newExtend = True [29].

We also present a simplified version of the F4 algorithm in Algorithm 3. For this, we need however
to introduce the required notation.



Definition 4. Let F ⊂ F[x0, . . . , xn−1], and (f, g) ∈ F × F with f 6= g. We denote:

Pair(f, g) =
(
LCM(LM(f),LM(g)),mf , f,mg, g

)
,

where LCM(LM(f),LM(g)) = LM(mg · g) = LM(mf · f).

Now, let P = {Pair(f, g) | ∀(f, g) ∈ P ×P with g > f},p = Pair(f, g) ∈ P . We define Left and
Right as:

Left(p) = (mf , f) Right(p) = (mg, g),

Left(P ) =
⋃
p∈P

Left(p) Right(P ) =
⋃

p∈P Right(p).



Input: F – a list of polynomials f0, . . . , fm−1 ∈ F[x0, . . . , xn−1] spanning a zero-dimensional ideal.
Result: A Gröbner basis for 〈f0, . . . , fm−1〉.
begin1

D ←− max{deg(f) | f ∈ F};2

d←− min{deg(f) | f ∈ F};3

Mu←− ∅;4

newExtend←− True;5

x←− x0;6

CL←− d;7

while True do8

F̃≤d ←− the row echelon form (or matrix form) of F≤d;9

Mu←−Mu ∪ {f ∈ F̃≤d | deg(f) < d and LM(f) 6∈ LM(F≤d)};10

F≤d ←− F̃≤d;11

// did we find mutants?

if Mu 6= ∅ then12

k ←− min{deg(f) | f ∈Mu};13

y ←− max{LV(f) | f ∈ F≤k+1};14

Mu+
=k ←− Multiply all elements of Mu=k by all variables ≤ y;15

Mu←−Mu \Mu=k;16

F ←− F ∪Mu+
=k;17

d←− k + 1;18

else19

// does the basis contain all monomials of some degree dt?
if d < CL and M=dt ⊆ LM(F ) for some 1 ≤ dt ≤ d then20

// We found a Gröbner basis

return F ;21

// did we do all enlargements at this degree already?

if newExtend = True then22

D ←− D + 1;23

x←− min{LV(f) | f ∈ F=D−1};24

newExtend←− False;25

else26

// do partial enlargement and eliminate

x←− min{LV(f) | f ∈ F=D−1 and LV(f) > x};27

F+ ←− Multiply all elements of LV(F, x) by all variables ≤ x without28

redundancies;
F ←− F ∪ F+;29

if x = x0 then30

newExtend←− True;31

CL = D;32

d←− D;33

end34

Algorithm 2: MXL3 (simplified)



Input: F – a tuple of polynomials f0, . . . , fm−1

Input: Sel – a selection strategy
Result: a Gröbner basis for F
begin1

G, i←− F, 0;2

F̃+
i ←− F ;3

P ←− {Pair(f, g) | ∀f, g ∈ G with g > f};4

while P 6= ∅ do5

i←− i + 1;6

Pi ←− Sel(P );7

P ←− P \ Pi;8

Li ←− Left(Pi)
⋃

Right(Pi);9

// Symbolic Preprocessing

Fi ←− {t · f | ∀(t, f) ∈ Li};10

Done←− LM(Fi);11

while M(F ) 6= Done do12

m←− an element in M(F ) \Done;13

add m to Done;14

if ∃ g ∈ G such thatLM(g) | m then15

u = m/LM(g);16

add u · g to Fi;17

// Gaussian Elimination

F̃i ←− the row echelon form of Fi;18

F̃+
i ←− {f ∈ F̃ | LM(f) 6∈ LM(F )};19

for h ∈ F̃+
i do20

P ←− P
⋃
{Pair(f, h) : ∀f ∈ G};21

add h to G;22

return G;23

end24

Algorithm 3: F4 (simplified)



5 Relationship between the MXL Algorithms and F4

In this section we discuss the relation between MXL3 and F4. It was shown in [3] that XL can be
understood as a redundant variant of F4 (cf. Lemma 1). Thus, we know that the “framework” of
MXL3 is compatible with F4. Thus in order to study the connection between the two algorithms,
we only have to consider the modifications made in MXL3 compared to XL.

5.1 Mutants

The most visible change to XL in MXL3 is the special treatment given to mutants. That is, instead
of increasing the degree d in each iteration, if there is a fall of degree, then these new elements
are treated at the current or perhaps a smaller degree before the algorithm proceeds to increase
the degree as normally. Thus, compared to XL, the MXL family of algorithms may terminate at
a lower degree.

On the other hand, the F4 algorithm does not specify how to choose polynomials in each iteration
of the main loop. Instead, the user passes a function Sel which specifies how to select pairs of
polynomials. However, in [20] it is suggested to choose the normal selection strategy for most
inputs. We recall here how the normal strategy has been adapted in F4.

Definition 5 (Normal Strategy). Let F = {f0, . . . , fm−1}. We shall say that a pair (f, g) ∈
F × F with f 6= g is a critical pair. Let then P ⊂ F × F be the set of critical pairs. We denote by
LCM(pij) the least common multiple of the leading monomials of the critical pair pij = (fi, fj) ∈
P. We also call deg(LCM(pij)) the degree of the critical pair pij. Further, let

d = min{deg(LCM(p)) | p ∈ P}

be the minimal degree of those least common multiples of p in P. Then the normal selection strategy
selects the subset

P ′ = {p ∈ P | deg(LCM(p)) = d}.

We can now state our main result.

Theorem 1. Let both MXL3 and F4 compute a Gröbner basis with respect to the same degree
compatible ordering on the same input. Assume that until iteration i (inclusive) of the main loop
both F4 and MXL3 computed the same list of polynomials. Furthermore, assume that Mu 6= ∅
in Algorithm 2 at line 12 and define k to be the minimal degree of a polynomial in Mu. The set
of polynomials F≤k+1 considered by MXL3 in the next iteration of the main loop is a superset of
the polynomials considered by F4 when using the Normal Selection Strategy in the next iteration
i+ 1. Furthermore, every polynomial in F≤k+1 not in the set considered by F4 is redundant in this
iteration.

Proof. First consider the F4 algorithm, and assume that Sel is the Normal Selection Strategy.
Then, the set Pi+1 will contain the S-polynomials of lowest degree in P. Every S-polynomial in
Pi+1 will have at least degree k+1, since the set Mu=k is in row echelon form and k is the minimal
degree in Mu. If there exists a S-polynomial of degree k+ 1 then it is of the form tifi − tjfj with
deg(tifi) = k + 1 and deg(tjfj) = k + 1, where at least one of ti, tj has degree 1. Since MXL3

constructs all multiples tijfi with deg(tij) = 1 if deg(fi) = k and all elements of degree k + 1 in
the next iteration, both components of the S-polynomial are included in F≤k+1.



In the Symbolic Preprocessing phase F4 also constructs all components of potential S-polynomials
that could arise during the elimination. These are always of the form fi − tjfj where deg(fi) =
deg(tjfj). Since MXL3 considers all monomial multiplies of all fj up to degree k + 1 in the next
iteration, these components are also included in the set Fk+1.

Recall from Corollary 1 that all f = Σt−1
i=0 cix

α(i)fi can be rewritten as

f =

t−2∑
j=0

bjx
δ−τjS(fj , fj+1)

if f < max{xα(i)fi}. Note that deg(xδ) ≤ k + 1 for F≤k+1 and that deg(xτj ) = k + 1 for all
S-polynomials contained in F≤k+1. It follows that deg(xδ−τj ) = 0 if bj 6= 0. That is, any f with
a smaller leading term than its representation Σt−1

i=0 cix
α(i)fi can be computed by an F-linear

combination of S-polynomials: f =
∑t−2
j=0 bjS(fj , fj+1).

It follows immediately from Corollary 1 that any multiple of fi which does not correspond to a S-
polynomial is redundant in this iteration since it cannot lead to a drop of a leading monomial. ut

5.2 Partial Enlargement

The “partial enlargement” technique was introduced in MXL2 and is also applied in MXL3. Instead
of multiplying every polynomial fi ∈ F by all variables x0, . . . , xn−1 only a subset LV(F, x) is
considered. This subset is increased in each iteration by increasing x. In the language of linear
algebra, the algorithm first computes the row echelon form of a submatrix in the lower right corner.
If that does not suffice to produce elements of smaller degree, a bigger submatrix is considered.

This corresponds to selecting a subset of S-polynomials with small least common multiple in
Sel instead of selecting all polynomials of minimal degree. We note that both the PolyBoRi
package [7] and Magma computer algebra system [5] accept an option to restrict the number of S-
polynomials considered in each iteration. However, the strategy how the number of S-polynomials is
chosen in Magma and PolyBoRi is different from MXL3. In the former ones, a constant number
of S-polynomials is chosen as specified by the user; in the latter (MXL3) a changeable number
of S-polynomials is chosen based on the partition by leading variable. The strategy employed in
MXL3 will consider S-polynomials S(f, g) where both f and g have leading variable at most x
(inclusive). That is, if there is an S-polynomial S(f, g) = tff − tgg with LV(f) < LV(g), MXL3

will construct tf · f when considering LV(F,LV(f)) and tg · g when considering LV(F,LV(g)).
Since F≤d contains all elements of degree at most d, both components are included in the matrix
when LV(F,LV(g)) are considered.

It is currently not clear which strategy for selecting subsets of S-polynomials is beneficial under
which conditions. It should be noted however that if the size of the matrix is the main con-
cern then selecting exactly the smallest S-polynomial in each iteration would be optimal; just as
Buchberger’s algorithm does. On the other hand, the contribution of algorithms such as F4 is to
improve performance by considering more than one S-polynomial in each iteration. Thus, it is not
certain that using matrix sizes as a main measure of comparison gives an adequate picture of the
performance of these algorithms.

5.3 Termination Criterion

The key contribution of the MXL3 algorithm is the introduction of a new criterion to detect when
a Gröbner basis is found. Since the MXL family does not use the concept of critical pairs, standard



termination criteria such as an empty list of pairs are not immediately applicable. In Lemma 3 we
give an equivalent variant of this criterion, rephrased to be more suitable for our discussion.

Lemma 3 (Proposition 3 in [30]). Let G = {g0, . . . , gs−1} be a finite subset of F[x0, . . . , xn−1]
with D being the highest degree of its elements. Suppose that the following hold:

1. all monomials of degree D in F[x0, . . . , xn−1] are divisible by a leading monomial of some
gi ∈ G; and

2. if H = G ∪ {t · gi | gi ∈ G, t a monomial and deg(t · gi) ≤ D + 1}, there exists H̃ – a row
echelon form of H – such that LM(H̃≤D) ⊂ 〈LM(G)〉.

Then G is a Gröbner basis.

Note that condition 1 implies that the ideal generated by G is 0-dimensional.

The MXL3 algorithm uses a termination criterion based on Lemma 3 and thus will consider
matrices up to degree D+ 1 (where D is defined as in Lemma 3). The F4 algorithm, on the other
hand, will terminate once the list of critical pairs is empty. It is obvious that no new pairs will
be created after the Gröbner basis is found, since all reductions will lead to zero in this situation.
However, if we consider F4 as given in Algorithm 3, one can see that the algorithm may consider
pairs of degree > D+ 1 after a Gröbner basis is discovered, if those pairs were constructed before
the Gröbner basis is found. Put differently, the simplified F4 variant considered in this work does
not prune the list of critical pairs based on the current basis G. However, the full F4 algorithm as
specified in [20, p. 9] does indeed prune the list P by calling a subroutine called Update. In [20]
a reference to [4, p. 230] is made – which applies Buchberger’s first and second criteria using the
Gebauer-Möller installation – as an example of such a routine.

The question thus becomes whether Buchberger’s first and second criteria will remove all pairs
of degree > D + 1 if the conditions (1) and (2) of Lemma 3 hold. An algorithmic variant of
Buchberger’s second criterion is given in the Lemma below.

Lemma 4 (Buchberger’s second criterion). Let G be a finite subset of the F[x0, . . . , xn−1]
and p, g1, g2 ∈ F[x0, . . . , xn−1] be such that

LM(p) | LCM(LM(g1),LM(g2)).

and S(g1, p), S(g2, p) have already been considered. Then S(g1, g2) does not need to be considered
and can be discarded.

We can now prove that the full F4 algorithm will not consider pairs of a higher degree than the
MXL3 when applying Buchberger’s second criterion.

Proposition 1. We assume a degree compatible ordering on F[x0, . . . , xn−1]. If during a Gröbner
basis computation using the full F4 algorithm conditions (1) and (2) of Lemma 3 hold, then Buch-
berger’s second criterion will remove any pair of degree > D+ 1 from the list of critical pairs and
thus F4 will consider critical pairs of degree at most D + 1.

Our proof follows very closely the original proof of Lemma 3 in [30].

Proof. Let G = {g0, . . . , gs−1} be a finite subset of F[x0, . . . , xn−1] with D being the highest degree
of its elements such that:



1. all monomials of degree D in F[x0, . . . , xn−1] are divisible by a leading monomial of some
gi ∈ G; and

2. if H = G ∪ {t · gi | gi ∈ G, t a monomial and deg(t · gi) ≤ D + 1}, there exists H̃ – a row
echelon form of H – such that LM(H̃≤D) ⊂ 〈LM(G)〉.

We denote the S-polynomial S(gi, gj) by f , and let d = deg(f). We only have to consider pairs of
degree d > D + 1.

To do so, let m = LCM(LM(gi),LM(gj)). There exist monomials mi,mj such that m = mi ·
LM(gi) = mj · LM(gj). It is clear that GCD(mi,mj) = 1.

By assumption deg(gi) and deg(gj) are at most equal to D. This implies that deg(mj) ≥ 2
(resp. deg(mj) ≥ 2) since d > D + 1. It is then possible to write mi = mi,1 · mi,2 such that
deg(gi) + deg(mi,2) = D + 1 and deg(mi,1) ≥ 1. A similar decomposition can be found for mj =
mj,1 ·mj,2. Thus, we have that all monomials mi,1,mi,2,mj,1 ·mj,2 are of degree ≥ 1.

Now, let m∗ = m
mi,1·mj,1 . By construction, we have

LCM(m∗,LM(gi)) = m/mi,1 (resp. LCM(m∗,LM(gj)) = m/mj,1),

which divides m properly. We also have deg(m∗) ≤ D. Since m1 and m2 must be distinct, we have
that m∗ cannot be equal to either LM(gi) or LM(gj). By condition 1, there exists g ∈ G \ {g1, g2}
such that with LM(g) = m∗. In addition

deg(LCM(LM(g),LM(gi)) < deg(m)

and deg(LCM(LM(g),LM(gj)) < deg(m). Thus, S(g, gi) and S(g, gj) are being considered at a
lower degree than D + 1.

Finally,m∗ dividesm = LCM(LM(gi),LM(gj)) by construction. It then follows from Buchberger’s
second criterion that f = S(gi, gj) does not need to be considered and is discarded. ut

6 Conclusion

In this work we have studied the MXL family algorithms, and their connections to Gröbner
bases theory. We demonstrated that the mutant strategy as used in the MXL algorithms is in
fact a redundant variant of the Normal Selection Strategy. Furthermore, we showed that the
partial enlargement strategy proposed in [31] corresponds to selecting a subset of S-polynomials of
minimal degree in each iteration of algorithms such as F4. As a result, we conclude that both the
MXL and MXL2 algorithms can be seen as redundant variants of the F4 algorithm, although the
latter may select critical pairs differently from usual F4 implementations. Finally, we studied the
novel termination criterion proposed in [30] and concluded that it does not allow the algorithm to
terminate at a lower degree than F4. Consequently, we conclude that MXL3 too can be understood
as a redundant variant of the F4 algorithm.

We conclude with a brief discussion on what we view as the limitations of using running times as
the basis for comparison between Gröbner basis algorithms. As noted early in this paper, linear
algebra-based Gröbner bases algorithms allow several degrees of freedom to the designer and
implementer of the algorithm to generate the matrices, and selection of strategies can drastically
affect the efficiency of the computations. Furthermore, the specific implementation details and
sub-algorithms used in the implementation (e.g. the package used for performing the Gaussian
reductions, the internal representation of sparse matrices ,. . .) will also have great effect on running
times and memory requirements (cf. Appendix A for an example).



In fact, we claim that three almost-independent aspects will affect running times of such algo-
rithms: the mathematical details of the algorithm itself, the strategies and heuristics used in the
implementation, and the low-level implementation details. The first aspect was the main focus
of interest in this paper, but it should be clear that our results do not preclude that particular
implementations of MutantXL algorithms can outperform particular implementations of F4/F5 in
some situations. On the other hand, we are aware that it is difficult to compare the complexity of
Gröbner basis algorithms and strategies and that designers often have little choice but to resort
to experimental data to demonstrate the viability of their approach.
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A Effect of Linear Algebra Implementations on Gröbner Basis
Computations

To show the effect of the linear algebra implementation, we compare two implementations of
the F4 algorithm. The only difference is the linear algebra package use to perform the Gaussian
elimination step. We compare the original FGb implementation with the new linear algebra package
described in [19]. However, to make the comparison fair we only us a sequential version of the
package described in [19]. To compare, we consider the reduction of the 7th matrix occurring in
the computation of a Gröbner basis of the standard benchmark Katsura 12 over F65521, as well
as the full Gröbner basis computation. Typically, it takes 326.1 sec and 250 Mbytes to reduce the
7th matrix with FGb and 83.7 seconds and 682 Mbytes using FGb with the library from [19].

Table 1. Algorithm: F4 Benchmark: Katsura 14 mod p = 65521.

Matrix 7 (21, 915× 23, 127) Full Gröbner basis
FGb/CPU 83 s. 326 s.
FGb/Memory 250 Mbytes 262 Mbytes
FGb/Pasco/CPU [19] (1 core) 32 s. 151 s.
FGb/Pasco/Memory [19] 682 Mbytes 682 Mbytes


