On the relation of the Mutant strategy and the Normal Selection strategy

Martin Albrecht ${ }^{1} \quad$ Carlos Cid ${ }^{2}$ Jean-Charles Faugère ${ }^{1} \quad$ Ludovic
Perret 1

1 SALSA Project -INRIA, UPMC, Univ Paris 06
2 Information Security Group, Royal Holloway, University of London
20.1.2011

Outline

1 Motivation

2 Gröbner Basics

3 Mutants

4 Mutants in MXL_{3}
$5 \mathrm{MXL}_{3}$ and the Normal Selection Strategy

Outline

1 Motivation

2 Gröbner Basics

3 Mutants

4 Mutants in MXL_{3}
$5 \mathrm{MXL}_{3}$ and the Normal Selection Strategy

Polynomial System Solving

- Polynomial system solving has many applications in cryptography, mainly in cryptanalysis.
- In particular, the security of many cryptographic primitives can be related to solving large systems of equations.
- Thus, studying the complexity of and algorithms for solving such systems is an important task for cryptographers.
- However, much of the research in this direction in the cryptographic community is done without taking the theory of polynomial system solving from commutative algebra into sufficient consideration.
- The prime example of this missing connection is the XL algorithm for solving multivariate polynomial systems of equations.

XL and F4

- It is well-known that the XL algorithm [CKPS00] is a redundant variant of the F_{4} [Fau99] algorithm for computing Gröbner bases [AFI $\left.{ }^{+} 04\right]$.
- The "Mutant XL" series of algorithms has attracted attention from the cryptographic community since

■ practical implementations offer good performance w.r.t. some metrics and

- the concept of "Mutants" promises a new direction on polynomial system solving.

It is thus natural to ask what Mutants are exactly and whether we can understand them in the context of commutative algebra.

Outline

1．Motivation

2 Gröbner Basics

3 Mutants

4 Mutants in MXL_{3}
$5 \mathrm{MXL}_{3}$ and the Normal Selection Strategy

Notation I

■ $R=\mathbb{F}\left[x_{0}, \ldots, x_{n-1}\right]$, we assume a degree term ordering in this work.

- T denotes the set of all monomials in R.
- Let $m=x^{\alpha(i)}=x_{0}^{\alpha_{0}} x_{1}^{\alpha_{1}} \ldots x_{n-1}^{\alpha_{n-1}}$. We define the exponent vector:

$$
\operatorname{expvec}(m)=\left(\alpha_{0}, \alpha_{1}, \ldots, \alpha_{n-1}\right)
$$

- $\mathrm{LM}(f)$ is the largest or leading monomial appearing in f.
- $\operatorname{LM}(F)=\{\operatorname{LM}(f) \mid f \in F\}$.
- $\mathrm{LC}(f)$ is the coefficient corresponding to $\operatorname{LM}(f)$ in f.
- $\operatorname{LT}(f)$ is $\operatorname{LC}(f) \mathrm{LM}(f)$.
- $\operatorname{LV}(f)$ denotes the biggest variable in $\operatorname{LM}(f)$.
- $\operatorname{LV}(F, x)$ is defined as $\{f \in F, \operatorname{LV}(f)=x\}$.
- We denote by $S_{(o p) d}$ the subset of S with elements of degree (op)d where $(o p) \in\{=,<, \leq,>, \geq\}$.

Notation II

An example in $\mathbb{F}[x, y, z]$ with term ordering deglex:

$$
f=3 y z+2 x+1
$$

- $\operatorname{LM}(f)=y z$,
- $\mathrm{LC}(f)=3$,
- $\operatorname{LT}(f)=3 y z$ and
- $\operatorname{LT}(f)=y$.

Notation III

We may write multiples of polynomials f_{0}, \ldots, f_{m-1} in "matrix notation":
monomials of degree D

Notation IV

Definition

Let f_{0}, \ldots, f_{m-1} be polynomials in R. The set

$$
\left\langle f_{0}, \ldots, f_{m-1}\right\rangle=\left\{\sum_{i=0}^{m-1} h_{i} f_{i} \mid h_{0}, \ldots, h_{m-1} \in R\right\} .
$$

is an ideal. This ideal is called the ideal generated by f_{0}, \ldots, f_{m-1}.

Notation V

Definition (Gröbner Basis)

Let \mathcal{I} be an ideal of $\mathbb{F}\left[x_{0}, \ldots, x_{n-1}\right]$ and fix a monomial ordering. A finite subset

$$
G=\left\{g_{0}, \ldots, g_{m-1}\right\} \subset \mathcal{I}
$$

is said to be a Gröbner basis of \mathcal{I} if

$$
\forall f \in \mathcal{I} \text { there exists } g_{i} \in G \text { such that } \operatorname{LM}\left(g_{i}\right) \mid \operatorname{LM}(f) .
$$

Notation VI

Definition (Reduced Gröbner Basis)

A reduced Gröbner basis for a polynomial ideal I is a Gröbner basis G such that:
(1) $\mathrm{LC}(f)=1$ for all $f \in G$;
2. $\forall f \in G, \nexists m \in M(f)$ such that $m \in\langle\operatorname{LM}(G \backslash\{f\})\rangle$.

Notation VII

- Computing the reduced Gröbner basis from any Gröbner basis is a polynomial time algorithm in the size of th basis.
- The reduced Gröbner basis is unique for a given ideal and term ordering.
- Let $c=c_{0}, \ldots, c_{n-1}$ be the unique solution for all

$$
f \in \mathcal{I}=\left\langle f_{0}, \ldots, f_{n-1}\right\rangle .
$$

Then, the reduced Gröbner basis is

$$
x_{0}-c_{0}, \ldots, x_{n-1}-c_{n-1}
$$

- Thus, if a system of equations has exactly one solution then computing the Gröbner basis is equivalent to computing this solutions.

S-polynomials I

Bruno Buchberger proved in his PhD thesis [Buc65] that Gröbner bases can be computed by considering S-polynomials.

Definition (S-Polynomial)

Let $f, g \in \mathbb{F}\left[x_{0}, \ldots, x_{n-1}\right]$ be non-zero polynomials.

- Let x^{γ} be the least common multiple of $\operatorname{LM}(f)$ and $\operatorname{LM}(g)$, written as

$$
x^{\gamma}=\operatorname{LCM}(\operatorname{LM}(f), \operatorname{LM}(g))
$$

- The S-polynomial of f and g is defined as

$$
S(f, g)=\frac{x^{\gamma}}{\operatorname{LT}(f)} \cdot f-\frac{x^{\gamma}}{\operatorname{LT}(g)} \cdot g .
$$

S-polynomials II

For example, in $\mathbb{F}[x, y, z]$ with a deglex term ordering the S-polynomial of $f=x y+x+1$ and $g=y z+x$ is

$$
z f-x g=x y z+x z+z-x y z-x^{2}=-x^{2}+x z+z
$$

S-polynomials III

In fact, it is sufficient to consider only S-polynomials in Gröbner basis computations since any reduction of leading terms can be attributed to S-polynomials.

S-polynomials IV

Consider

$$
f=\sum_{i=0}^{t-1} c_{i} m_{i} f_{i}
$$

where m_{i} is some monomial and assume

$$
\operatorname{LM}(f)<\min \left\{\operatorname{LM}\left(m_{i} f_{i}\right) \mid 0 \leq i<t\right\}
$$

i.e. that we have cancellations of leading terms.

These cancellations can be attributed to S-polynomials.

S-polynomials V

Lemma (Cancellation, [CLO92])

Let every element of $f=\sum_{i=0}^{t-1} c_{i} x^{\alpha(i)} f_{i}$ and constants c_{0}, \ldots, c_{n-1} have exponent vector δ if $c_{i} \neq 0$, that is $\alpha(i)+\operatorname{expvec}\left(f_{i}\right)=\delta \in \mathbb{Z}_{\geq 0}^{n}$. If the sum f has a smaller leading exponent vector, then there exists constants $c_{j k}$ such that

$$
\begin{equation*}
\sum_{i=0}^{t-1} c_{i} x^{\alpha(i)} f_{i}=\sum_{j, k} c_{j k} x^{\delta-\gamma_{j k}} S\left(f_{j}, f_{k}\right) \tag{1}
\end{equation*}
$$

where $x^{\gamma_{j k}}=\operatorname{LCM}\left(\operatorname{LM}\left(f_{j}\right), \operatorname{LM}\left(f_{k}\right)\right)$.
Furthermore, each $x^{\delta-\gamma_{j k}} S\left(f_{j}, f_{k}\right)$ has a leading exponent vector $<\delta$.

S-polynomials VI

Let $f_{j k}=x^{\delta-\gamma_{j k}} S\left(f_{j}, f_{k}\right)$. Note that the claim of the Cancellation Lemma is not that

$$
\operatorname{LM}\left(f_{j k}\right) \leq \operatorname{LM}(f),
$$

instead the claim is that the representation gets smaller (" $<\delta$ ").
However, computing S-polynomials of S-polynomials, i.e. a repeated application of the Cancellation Lemma to $f=\Sigma_{i j} c_{j k} x^{\alpha(j k)} f_{j k}$ if $\operatorname{LM}(f)<\operatorname{LM}\left(x^{\delta-\gamma_{j k}} S\left(f_{j}, f_{k}\right)\right)$ will produce a representation which is minimal.

S-polynomials VII

Thus, whatever cancellations can be produced by monomial multiplies and \mathbb{F}-linear combinations, they can be attributed to S-polynomials.
Consequently, the only cancellations that need to be considered in an XL style algorithm are those produced by S-polynomials.

Example I

Consider the polynomials in $\mathbb{F}_{127}[x, y, z]$ with term ordering deglex:

$$
\begin{aligned}
f & =x y+x+1, \\
g & =x+1 \text { and } \\
h & =z+1 .
\end{aligned}
$$

We can construct two S-polynomials of degree two:

$$
\begin{aligned}
& s_{0}=f-y g=x-y+1 \text { and } \\
& s_{1}=z g-x h=-x+z \text {. }
\end{aligned}
$$

In matrix notation we thus need at most 6 rows: $f, y g, z g, y h, g, h$.

Example II

For comparison, XL would consider the following nine polynomials up to degree two.

$$
\begin{aligned}
f & =x y+x+1 \\
x g & =x^{2}+x \\
y g & =x y+y \\
z g & =x z+z \\
x h & =x z+x \\
y h & =y z+y \\
z h & =z^{2}+z \\
g & =x+1 \text { and } \\
h & =z+1
\end{aligned}
$$

Example III

In matrix notation:

$$
\left(\begin{array}{lllllllll}
0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 1 \\
1 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1
\end{array}\right) \rightarrow\left(\begin{array}{llllllllr}
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -1 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & -1 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & -1 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right)
$$

The rank is eight; yet, we know from the Cancellation Lemma that six rows ($f, y g, z g, y h, g, h$) would have been sufficient.

Example IV

- Furthermore, from Buchberger's first criterion [CLO92] we know that only the four rows $f, y g, g, h$ need to be considered since the leading terms of g and h are pairwise prime.
- Thus, the matrix constructed by XL contains 4 out of 9 rows which are redundant even though they do not reduce to zero.
- Conversely, any reduction that produced a new lower leading term in the matrix constructed by XL can be attributed to S-polynomials.

Another Example I

S-polynomials of S-polynomials

Consider the polynomials $f=x y+a, g=y z+b$, and $h=a b+1$.
■ Only one S-polynomial does not reduce to zero: $s_{0}=z f-x g=z a-x b$.
■ From s_{0} we can then construct $s_{1}=b s_{0}-z h=x b^{2}+z$ also at degree three which is an element of the Gröbner basis.
■ XL at degree 3 will produce

$$
\{m \cdot p \mid m \in\{1, x, y, z, a, b\}, p \in\{f, g, h\}\}
$$

which reduces to $x^{2} y+x a, x y^{2}+y a, x y z+x b, y^{2} z+y b, y z^{2}+z b$, $x y a+a^{2}, y z a-1, x y b-1, y z b+b^{2}, x a b+x, y a b+y, z a b+z$, $a^{2} b+a, a b^{2}+b, x y+a, y z+b, z a-x b$ and $a b+1$.
\square Note that $x b^{2}+z$ is not in that list.

Another Example II

S-polynomials of S-polynomials

■ However, if we increase the degree of XL to four, the list that is returned is $x^{3} y+x^{2} a, x^{2} y^{2}-a^{2}, x y^{3}+y^{2} a, x^{2} y z+x^{2} b, x y^{2} z+1$, $y^{3} z+y^{2} b, x y z^{2}+x z b, y^{2} z^{2}-b^{2}, y z^{3}+z^{2} b, x^{2} y a+x a^{2}$, $x y^{2} a+y a^{2}, x y z a-x, y^{2} z a-y, y z^{2} a-z, x y a^{2}+a^{3}, y z a^{2}-a$, $x^{2} y b-x, x y^{2} b-y, x y z b-z, y^{2} z b+y b^{2}, y z^{2} b+z b^{2}, x^{2} a b+x^{2}$, $x y a b-a, y^{2} a b+y^{2}, x z a b+x z, y z a b-b, z^{2} a b+z^{2}, x a^{2} b+x a$, $y a^{2} b+y a, z a^{2} b+x b, a^{3} b+a^{2}, x y b^{2}-b, y z b^{2}+b^{3}, x a b^{2}+x b$, $y a b^{2}+y b, z a b^{2}+z b, a^{2} b^{2}-1, a b^{3}+b^{2}, x^{2} y+x a, x y^{2}+y a$, $x y z+x b, y^{2} z+y b, y z^{2}+z b, x y a+a^{2}, x z a-x^{2} b, y z a-1$, $z^{2} a-x z b, z a^{2}+x, x y b-1, y z b+b^{2}, x a b+x, y a b+y, z a b+z$, $a^{2} b+a, \mathbf{x b}^{2}+\mathbf{z}, a b^{2}+b, x y+a, y z+b, z a-x b$ and $a b+1$.
■ XL could not produce $x b^{2}+z$ at degree 3 since this element corresponds to

$$
b(z f-x g)-z h=(b z) f-(b x) g-z h
$$

but we have that $\operatorname{deg}(b z f)=4$.

Outline

1．Motivation

2 Gröbner Basics

3 Mutants

4 Mutants in MXL_{3}
$5 \mathrm{MXL}_{3}$ and the Normal Selection Strategy

Definition I

Let $\mathcal{I}=\left\langle f_{0}, \ldots, f_{m-1}\right\rangle \subset \mathbb{F}\left[x_{0}, \ldots, x_{n-1}\right]$. Any element element $f \in \mathcal{I}$ can be written as:

$$
f=\sum_{f_{i} \in F} h_{i} \cdot f_{i}, \text { with } h_{i} \in \mathbb{F}\left[x_{0}, \ldots, x_{n-1}\right] .
$$

- We call level of the representation $\sum_{f_{i} \in F} h_{i} \cdot f_{i}$ of $f \in \mathcal{I}$ the maximum degree of $\left\{h_{i} \cdot f_{i} \mid f_{i} \in F\right\}$.
- We call level of f the minimal level of all its representations.

Definition II

Definition

A polynomial $f \in \mathcal{I}$ is a mutant if its total degree is strictly less than its level.

In the language of commutative algebra, a mutant occurs when an S-polynomial has a lower degree leading term after reduction by the basis F which was not in F before reduction.

Outline

1 Motivation

2 Gröbner Basics

3 Mutants

4 Mutants in $M_{X L}$
$5 \mathrm{MXL}_{3}$ and the Normal Selection Strategy

Pseudocode

Simplified F_{4}

1 begin
$2 \mid G, i, \tilde{F}_{i}^{+} \longleftarrow F, 0, F ; P \longleftarrow\{\operatorname{Pair}(f, g): \forall f, g \in G$ with $g>f\}$;
while $P \neq \varnothing$ do
$i \longleftarrow i+1 ; P_{i} \longleftarrow \operatorname{SEL}(P) ; P \longleftarrow P \backslash P_{i} ;$
$F_{i} \longleftarrow\left\{t \cdot f, \forall(t, f) \in \operatorname{Left}\left(P_{i}\right) \bigcup \operatorname{Right}\left(P_{i}\right)\right\} ;$
Done $\longleftarrow \operatorname{LM}\left(F_{i}\right)$;
while $M(F) \neq$ Done do
$m \longleftarrow$ an element in $M(F) \backslash$ Done; add m to Done; if $\exists g \in G: \mathbf{L M}(g) \mid m$ then add $m / \operatorname{LM}(g) \cdot g$ to F_{i};
$\tilde{F}_{i} \longleftarrow$ the row echelon form of F_{i};
for $h \in\left\{f \in \tilde{F}_{i} \mid \mathbf{L M}(f) \notin \mathbf{L M}(F)\right\}$ do $P \longleftarrow P \bigcup\{\operatorname{PAIR}(f, h): \forall f \in G\} ;$ add h to G;

15
return G;
16 end

Outline

1 Motivation

2 Gröbner Basics

3 Mutants

4 Mutants in MXL_{3}
$5 \mathrm{MXL}_{3}$ and the Normal Selection Strategy

Mutants I

In MXL_{3} instead of increasing the degree d in each iteration, if there is a fall of degree then these new elements are treated at the current or perhaps a smaller degree before the algorithm proceeds to increase the degree.

Thus, compared to XL the MXL family of algorithms may terminate at a lower degree.

Note, we ignore the partial enlargement strategy for now.

Mutants II

The F_{4} algorithm does not specify how to choose polynomials in each iteration of the main loop.

Instead, the user passes a function Sel which specifies how to select critical pairs. In [Fau99] it is suggested to choose the pairs according to lowest degree similar to the Normal Selection Strategy in Buchberger's algorithm.

Mutants III

Definition (Normal Strategy in F_{4})

Let \mathcal{P} be a tuple of critical pairs and let $\operatorname{LCM}\left(p_{i j}\right)$ denote the least common multiple of the leading monomials of the two parts of the critical pair $p_{i j}=\left(f_{i}, f_{j}\right)$.

Further, let $d=\min \{\operatorname{deg}(\operatorname{LCM}(p)), p \in \mathcal{P}\}$ denote the minimal degree of those least common multiples of p in \mathcal{P}.

Then the normal selection strategy selects the subset \mathcal{P}^{\prime} of \mathcal{P} with $\mathcal{P}^{\prime}=\{p \in \mathcal{P} \mid \operatorname{deg}(\operatorname{LCM}(p))=d\}$.

Mutants IV

Theorem

Assume that $M \neq \varnothing$ in $M X L_{3}$. The set of polynomials $F_{\leq k+1}$ considered in the next iteration of the loop is a superset of the polynomials considered by F_{4} when using the Normal Selection Strategy in the iteration $i+1$ if up to this point $M X L_{3}$ computed a superset of the polynomials of F_{4}. Furthermore, every polynomial $\in F_{\leq k+1}$ not in the set considered by F_{4} is redundant at this step.

Mutants V

Proof:

- If Sel is the Normal Selection Strategy, the set \mathcal{P}_{i+1} will contain the S-polynomials of lowest degree in \mathcal{P}.
- Every S-polynomial in \mathcal{P}_{i+1} will have at least degree $k+1$, since the set $M_{=k}$ is in row echelon form and k is the minimal degree in M.
- If there exists an S-polynomial of degree $k+1$ then it is of the form $t_{i} f_{i}-t_{j} f_{j}$ with $\operatorname{deg}\left(t_{i} f_{i}\right)=k+1$ and $\operatorname{deg}\left(t_{j} f_{j}\right)=k+1$, where at least one of t_{i}, t_{j} has degree 1 .
- Since MXL_{3} constructs all multiples $t_{i j} f_{i}$ with $\operatorname{deg}\left(t_{i j}\right)=1$ if $\operatorname{deg}\left(f_{i}\right)=k$ and includes all elements of degree $k+1$ which can be produced in the next iteration, both components of the S-polynomial are included in $F_{\leq k+1}$.

Mutants VI

■ In the Symbolic Preprocessing phase F_{4} also constructs all components of potential S-polynomials that could arise during the elimination.

- These are always of the form $f_{i}-t_{j} f_{j}$ where $\operatorname{deg}\left(f_{i}\right)=\operatorname{deg}\left(t_{j} f_{j}\right)$.
- Since MXL_{3} considers all monomial multiplies of all f_{j} up to degree $k+1$ in the next iteration, these components are also included in the set F_{k+1}.

Mutants VII

- Recall from the Cancellation Lemma that all $f=\sum_{i=0}^{t-1} c_{i} X^{\alpha(i)} f_{i}$ can be rewritten as

$$
f=\sum_{j, k} c_{j k} x^{\delta-\gamma_{j k}} S\left(f_{j}, f_{k}\right) .
$$

- Note that $\operatorname{deg}\left(x^{\delta}\right) \leq k+1$ for $F_{\leq k+1}$ and that $\operatorname{deg}\left(x_{j k}^{\gamma}\right)=k+1$ for all S-polynomials contained in $F_{\leq k+1}$. We thus have that $\operatorname{deg}\left(x^{\delta-\gamma_{j k}}\right)=0$ if $c_{j k} \neq 0$.

Mutants VIII

- Consequently, any element f with smaller leading term that can be produced by \mathbb{F}-linear combinations of elements in $F_{\leq k+1}$ can be reduced to an \mathbb{F}-linear combination of S-polynomials.
- Thus, it follows from the Cancellation Lemma that any multiple of f_{i} which does not correspond to an S-polynomial is redundant at this step since it cannot lead to a drop of a leading monomial.

Partitioning I

The Partial enlargement technique was introduced in MXL_{2} and applied in MXL_{3}. Instead of multiplying every polynomial $f_{i} \in F$ by all variables in $\mathbb{F}\left[x_{0}, \ldots, x_{n-1}\right]$ only a subset $\operatorname{LV}(F, x)$ is considered, where x increases with every iteration if no Mutants were founds.

Partitioning II

■ This corresponds to selecting a subset of S-polynomials of minimal degree in SEL instead of selecting all polynomials of minimal degree.
■ For example, both PolyBoRi [BD07] and Magma [BCP97] provide an option to restrict the number of S-polynomials considered in each iteration using some fixed constant.

- However, the strategies how to select a subset are slightly different.
- Both strategies always pick the smallest S-polynomials.
- Magma and PolyBoRi pick up to a fixed number of S-polynomials

■ MXL_{3} picks a variable number of S-polynomials depending on the number of S-polynomials in a given partition.

Conclusion

- We have shown, that the Mutant strategy is a redundant variant of the Normal Selection strategy as used in F_{4}.
- We have shown that the Partitioning or Partial Enlargement Technique used in MXL_{2} and following algorithms is a equivalent to selecting a subset of S -polynomials in F_{4} implementations. However, the strategy how to select the size of the subsets are different in well-known F_{4} implementations and MXL_{3}.
- Since $X L$ is a redundant variant of the F_{4} algorithm and by mapping all novel concepts to their Gröbner basis equivalent, we conclude that the MXL family of algorithms are variants of the F_{4} algorithm.

We thus expect that the performance of implementations of the MXL family of algorithms can be improved considerably by introducing the notion of critical pairs and Buchberger's criteria for avoiding useless pairs.

Thank you for your attention

Mutants are people too!

Literature I

Gwenole Ars, Jean-Charles Faugère, Hideki Imai, Mitsuru Kawazoe, and Makoto Sugita.
Comparison between XL and Gröbner basis algorithms.
In Advances in Cryptology - ASIACRYPT 2004, volume 3329 of
Lecture Notes in Computer Science, Berlin, Heidelberg, New York, 2004. Springer Verlag.

國 Wieb Bosma, John Cannon, and Catherine Playoust.
The MAGMA Algebra System I: The User Language.
In Journal of Symbolic Computation 24, pages 235-265. Academic Press, 1997.
囯 Michael Brickenstein and Alexander Dreyer.
PolyBoRi: A framework for Gröbner basis computations with Boolean polynomials.
In Electronic Proceedings of MEGA 2007, 2007.
Available at
http://www.ricam.oeaw.ac.at/mega2007/electronic/26.pdf.

Literature II

圊 Bruno Buchberger.
Ein Algorithmus zum Auffinden der Basiselemente des Restklassenrings nach einem nulldimensionalen Polynomideal. PhD thesis, Universität Innsbruck, 1965.
Nicolas T. Courtois, Alexander Klimov, Jacques Patarin, and Adi Shamir.
Efficient algorithms for solving overdefined systems of multivariate polynomial equations.
In Advances in Cryptology - EUROCRYPT 2000, volume 1807 of
Lecture Notes in Computer Science, pages 392-407, Berlin, Heidelberg, New York, 2000. Springer Verlag.
國 David Cox, John Little, and Donal O'Shea.
Ideals, Varieties, and Algorithms.
Springer Verlag, Berlin, Heidelberg, New York, 1 edition, 1992.

Literature III

图 Jean-Charles Faugère.
A new efficient algorithm for computing Gröbner basis (F4). Journal of Pure and Applied Algebra, 139(1-3):61-88, 1999.

