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Polynomial System Solving

Polynomial system solving has many applications in cryptography,
mainly in cryptanalysis.

In particular, the security of many cryptographic primitives can be
related to solving large systems of equations.

Thus, studying the complexity of and algorithms for solving such
systems is an important task for cryptographers.

However, much of the research in this direction in the cryptographic
community is done without taking the theory of polynomial system
solving from commutative algebra into sufficient consideration.

The prime example of this missing connection is the XL algorithm
for solving multivariate polynomial systems of equations.



XL and F4

It is well-known that the XL algorithm [CKPS00] is a redundant
variant of the F4 [Fau99] algorithm for computing Gröbner bases
[AFI+04].

The “Mutant XL” series of algorithms has attracted attention from
the cryptographic community since

practical implementations offer good performance w.r.t. some
metrics and
the concept of “Mutants” promises a new direction on polynomial
system solving.

It is thus natural to ask what Mutants are exactly and whether we can
understand them in the context of commutative algebra.



Outline

1 Motivation
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Notation I

R = F[x0, . . . , xn−1], we assume a degree term ordering in this work.

T denotes the set of all monomials in R.

Let m = xα(i) = xα0
0 xα1

1 . . . x
αn−1

n−1 . We define the exponent vector:

expvec(m) = (α0, α1, . . . , αn−1).

LM(f ) is the largest or leading monomial appearing in f .

LM(F ) = {LM(f ) | f ∈ F}.
LC(f ) is the coefficient corresponding to LM(f ) in f .

LT(f ) is LC(f )LM(f ).

LV(f ) denotes the biggest variable in LM(f ).

LV(F , x) is defined as {f ∈ F ,LV(f ) = x}.
We denote by S(op)d the subset of S with elements of degree (op)d
where (op) ∈ {=, <,≤, >,≥}.



Notation II

An example in F[x , y , z ] with term ordering deglex:

f = 3yz + 2x + 1

LM(f ) = yz ,

LC(f ) = 3,

LT(f ) = 3yz and

LT(f ) = y .



Notation III

We may write multiples of polynomials f0, . . . , fm−1 in “matrix notation”:

monomials of degree D
(t0,0, f0)
(t0,1, f0)
(t0,2, f0)

...
(t1,0, f1)

...
(tm−1,0, fm−1)
(tm−1,1, fm−1)

...







Notation IV

Definition

Let f0, . . . , fm−1 be polynomials in R. The set

〈f0, . . . , fm−1〉 =

{
m−1∑
i=0

hi fi | h0, . . . , hm−1 ∈ R

}
.

is an ideal. This ideal is called the ideal generated by f0, . . . , fm−1.



Notation V

Definition (Gröbner Basis)

Let I be an ideal of F[x0, . . . , xn−1] and fix a monomial ordering. A finite
subset

G = {g0, . . . , gm−1} ⊂ I

is said to be a Gröbner basis of I if

∀f ∈ I there exists gi ∈ G such that LM(gi ) | LM(f ).



Notation VI

Definition (Reduced Gröbner Basis)

A reduced Gröbner basis for a polynomial ideal I is a Gröbner basis G
such that:

1 LC(f ) = 1 for all f ∈ G ;

2 ∀f ∈ G , 6 ∃ m ∈ M(f ) such that m ∈ 〈LM(G \ {f })〉 .



Notation VII

Computing the reduced Gröbner basis from any Gröbner basis is a
polynomial time algorithm in the size of th basis.

The reduced Gröbner basis is unique for a given ideal and term
ordering.

Let c = c0, . . . , cn−1 be the unique solution for all

f ∈ I = 〈f0, . . . , fn−1〉.

Then, the reduced Gröbner basis is

x0 − c0, . . . , xn−1 − cn−1.

Thus, if a system of equations has exactly one solution then
computing the Gröbner basis is equivalent to computing this
solutions.



S-polynomials I

Bruno Buchberger proved in his PhD thesis [Buc65] that Gröbner bases
can be computed by considering S-polynomials.

Definition (S-Polynomial)

Let f , g ∈ F[x0, . . . , xn−1] be non-zero polynomials.

Let xγ be the least common multiple of LM(f ) and LM(g), written
as

xγ = LCM(LM(f ),LM(g)).

The S-polynomial of f and g is defined as

S(f , g) =
xγ

LT(f )
· f − xγ

LT(g)
· g .



S-polynomials II

For example, in F[x , y , z ] with a deglex term ordering the S-polynomial of
f = xy + x + 1 and g = yz + x is

zf − xg = xyz + xz + z−xyz− x2 = −x2 + xz + z .



S-polynomials III

In fact, it is sufficient to consider only S-polynomials in Gröbner basis
computations since any reduction of leading terms can be attributed to
S-polynomials.



S-polynomials IV

Consider

f =
t−1∑
i=0

cimi fi

where mi is some monomial and assume

LM(f ) < min{LM(mi fi ) | 0 ≤ i < t}

i.e. that we have cancellations of leading terms.

These cancellations can be attributed to S-polynomials.



S-polynomials V

Lemma (Cancellation, [CLO92])

Let every element of f = Σt−1
i=0 cix

α(i)fi and constants c0, . . . , cn−1 have
exponent vector δ if ci 6= 0, that is α(i) + expvec(fi ) = δ ∈ Zn

≥0. If
the sum f has a smaller leading exponent vector, then there exists
constants cjk such that

t−1∑
i=0

cix
α(i)fi =

∑
j,k

cjkxδ−γjk S(fj , fk) (1)

where xγjk = LCM(LM(fj),LM(fk)).

Furthermore, each xδ−γjk S(fj , fk) has a leading exponent vector < δ.



S-polynomials VI

Let fjk = xδ−γjk S(fj , fk). Note that the claim of the Cancellation Lemma
is not that

LM(fjk) ≤ LM(f ),

instead the claim is that the representation gets smaller (“< δ”).

However, computing S-polynomials of S-polynomials, i.e. a repeated
application of the Cancellation Lemma to f = Σijcjkxα(jk)fjk if
LM(f ) < LM(xδ−γjk S(fj , fk)) will produce a representation which is
minimal.



S-polynomials VII

Thus, whatever cancellations can be produced by monomial multiplies
and F-linear combinations, they can be attributed to S-polynomials.

Consequently, the only cancellations that need to be considered in an XL
style algorithm are those produced by S-polynomials.



Example I

Consider the polynomials in F127[x , y , z ] with term ordering deglex:

f = xy + x + 1,

g = x + 1 and

h = z + 1.

We can construct two S-polynomials of degree two:

s0 = f − yg = x − y + 1 and

s1 = zg − xh = −x + z .

In matrix notation we thus need at most 6 rows: f , yg , zg , yh, g , h.



Example II

For comparison, XL would consider the following nine polynomials up to
degree two.

f = xy + x + 1,

xg = x2 + x ,

yg = xy + y ,

zg = xz + z ,

xh = xz + x ,

yh = yz + y ,

zh = z2 + z ,

g = x + 1 and

h = z + 1.



Example III

In matrix notation:



0 1 0 0 0 1 0 0 1
1 0 0 0 0 1 0 0 0
0 1 0 0 0 0 1 0 0
0 0 1 0 0 0 0 1 0
0 0 1 0 0 1 0 0 0
0 0 0 1 0 0 1 0 0
0 0 0 0 1 0 0 1 0
0 0 0 0 0 1 0 0 1
0 0 0 0 0 0 0 1 1


→



1 0 0 0 0 0 0 0 −1
0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 −1
0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 −1
0 0 0 0 0 1 0 0 1
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1 1
0 0 0 0 0 0 0 0 0



The rank is eight; yet, we know from the Cancellation Lemma that six
rows (f , yg , zg , yh, g , h) would have been sufficient.



Example IV

Furthermore, from Buchberger’s first criterion [CLO92] we know
that only the four rows f , yg , g , h need to be considered since the
leading terms of g and h are pairwise prime.

Thus, the matrix constructed by XL contains 4 out of 9 rows which
are redundant even though they do not reduce to zero.

Conversely, any reduction that produced a new lower leading term in
the matrix constructed by XL can be attributed to S-polynomials.



Another Example I
S-polynomials of S-polynomials

Consider the polynomials f = xy + a, g = yz + b, and h = ab + 1.

Only one S-polynomial does not reduce to zero:
s0 = zf − xg = za− xb.

From s0 we can then construct s1 = bs0 − zh = xb2 + z also at
degree three which is an element of the Gröbner basis.

XL at degree 3 will produce

{m · p | m ∈ {1, x , y , z , a, b}, p ∈ {f , g , h}}

which reduces to x2y + xa, xy2 + ya, xyz + xb, y2z + yb, yz2 + zb,
xya + a2, yza− 1, xyb − 1, yzb + b2, xab + x , yab + y , zab + z ,
a2b + a, ab2 + b, xy + a, yz + b, za− xb and ab + 1.

Note that xb2 + z is not in that list.



Another Example II
S-polynomials of S-polynomials

However, if we increase the degree of XL to four, the list that is
returned is x3y + x2a, x2y2 − a2, xy3 + y2a, x2yz + x2b, xy2z + 1,
y3z + y2b, xyz2 + xzb, y2z2 − b2, yz3 + z2b, x2ya + xa2,
xy2a + ya2, xyza− x , y2za− y , yz2a− z , xya2 + a3, yza2 − a,
x2yb − x , xy2b − y , xyzb − z , y2zb + yb2, yz2b + zb2, x2ab + x2,
xyab − a, y2ab + y2, xzab + xz , yzab − b, z2ab + z2, xa2b + xa,
ya2b + ya, za2b + xb, a3b + a2, xyb2 − b, yzb2 + b3, xab2 + xb,
yab2 + yb, zab2 + zb, a2b2 − 1, ab3 + b2, x2y + xa, xy2 + ya,
xyz + xb, y2z + yb, yz2 + zb, xya + a2, xza− x2b, yza− 1,
z2a− xzb, za2 + x , xyb − 1, yzb + b2, xab + x , yab + y , zab + z ,
a2b + a, xb2 + z, ab2 + b, xy + a, yz + b, za− xb and ab + 1.

XL could not produce xb2 + z at degree 3 since this element
corresponds to

b(zf − xg)− zh = (bz)f − (bx)g − zh,

but we have that deg(bzf ) = 4.
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Definition I

Let I = 〈f0, . . . , fm−1〉 ⊂ F[x0, . . . , xn−1]. Any element element f ∈ I
can be written as:

f =
∑
fi∈F

hi · fi , with hi ∈ F[x0, . . . , xn−1].

We call level of the representation
∑

fi∈F hi · fi of f ∈ I the
maximum degree of {hi · fi | fi ∈ F}.
We call level of f the minimal level of all its representations.



Definition II

Definition

A polynomial f ∈ I is a mutant if its total degree is strictly less than its
level.

In the language of commutative algebra, a mutant occurs when an
S-polynomial has a lower degree leading term after reduction by the basis
F which was not in F before reduction.
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2 Gröbner Basics

3 Mutants

4 Mutants in MXL3

5 MXL3 and the Normal Selection Strategy



Pseudocode

begin1

d ←− min{deg(f ) | f ∈ F};2

M ←− ∅;3

while True do4

F̃≤d ←− the row echelon form of F≤d ;5

M ←− M ∪ {f ∈ F̃≤d | deg(f ) < d and LM(f ) 6∈ LM(F≤d)};6

F≤d ←− F̃≤d ;7

if M 6= ∅ then8

k, y ←− min{deg(f ) | f ∈ M},max{LV(f ) | f ∈ F≤k+1};9

M+
=k ←− Multiply all elements of M=k by all variables ≤ y ;10

M,F ←− M \M=k ,F ∪M+
=k ;11

d ←− k + 1;12

. . .13

end14



Simplified F4

begin1

G , i , F̃+
i ←− F , 0,F ; P ←− {Pair(f , g) : ∀f , g ∈ G with g > f };2

while P 6= ∅ do3

i ←− i + 1; Pi ←− Sel(P); P ←− P \ Pi ;4

Fi ←− {t · f , ∀(t, f ) ∈ Left(Pi )
⋃

Right(Pi )};5

Done ←− LM(Fi );6

while M(F ) 6= Done do7

m←− an element in M(F ) \ Done;8

add m to Done;9

if ∃ g ∈ G : LM(g) | m then add m/LM(g) · g to Fi ;10

F̃i ←− the row echelon form of Fi ;11

for h ∈ {f ∈ F̃i | LM(f ) 6∈ LM(F )} do12

P ←− P
⋃
{Pair(f , h) : ∀f ∈ G};13

add h to G ;14

return G ;15

end16
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Mutants I

In MXL3 instead of increasing the degree d in each iteration, if there is a
fall of degree then these new elements are treated at the current or
perhaps a smaller degree before the algorithm proceeds to increase the
degree.

Thus, compared to XL the MXL family of algorithms may terminate at a
lower degree.

Note, we ignore the partial enlargement strategy for now.



Mutants II

The F4 algorithm does not specify how to choose polynomials in each
iteration of the main loop.

Instead, the user passes a function Sel which specifies how to select
critical pairs. In [Fau99] it is suggested to choose the pairs according to
lowest degree similar to the Normal Selection Strategy in Buchberger’s
algorithm.



Mutants III

Definition (Normal Strategy in F4)

Let P be a tuple of critical pairs and let LCM(pij) denote the least
common multiple of the leading monomials of the two parts of the
critical pair pij = (fi , fj).

Further, let d = min{deg(LCM(p)), p ∈ P} denote the minimal degree
of those least common multiples of p in P.

Then the normal selection strategy selects the subset P ′ of P with
P ′ = {p ∈ P | deg(LCM(p)) = d}.



Mutants IV

Theorem

Assume that M 6= ∅ in MXL3. The set of polynomials F≤k+1 considered
in the next iteration of the loop is a superset of the polynomials
considered by F4 when using the Normal Selection Strategy in the
iteration i + 1 if up to this point MXL3 computed a superset of the
polynomials of F4. Furthermore, every polynomial ∈ F≤k+1 not in the set
considered by F4 is redundant at this step.



Mutants V

Proof:

If Sel is the Normal Selection Strategy, the set Pi+1 will contain
the S-polynomials of lowest degree in P.

Every S-polynomial in Pi+1 will have at least degree k + 1, since the
set M=k is in row echelon form and k is the minimal degree in M.

If there exists an S-polynomial of degree k + 1 then it is of the form
ti fi − tj fj with deg(ti fi ) = k + 1 and deg(tj fj) = k + 1, where at
least one of ti , tj has degree 1.

Since MXL3 constructs all multiples tij fi with deg(tij) = 1 if
deg(fi ) = k and includes all elements of degree k + 1 which can be
produced in the next iteration, both components of the S-polynomial
are included in F≤k+1.



Mutants VI

In the Symbolic Preprocessing phase F4 also constructs all
components of potential S-polynomials that could arise during the
elimination.

These are always of the form fi − tj fj where deg(fi ) = deg(tj fj).

Since MXL3 considers all monomial multiplies of all fj up to degree
k + 1 in the next iteration, these components are also included in
the set Fk+1.



Mutants VII

Recall from the Cancellation Lemma that all f = Σt−1
i=0 cix

α(i)fi can
be rewritten as

f =
∑
j,k

cjkxδ−γjk S(fj , fk).

Note that deg(xδ) ≤ k + 1 for F≤k+1 and that deg(xγjk) = k + 1 for
all S-polynomials contained in F≤k+1. We thus have that
deg(xδ−γjk ) = 0 if cjk 6= 0.



Mutants VIII

Consequently, any element f with smaller leading term that can be
produced by F-linear combinations of elements in F≤k+1 can be
reduced to an F-linear combination of S-polynomials.

Thus, it follows from the Cancellation Lemma that any multiple of fi
which does not correspond to an S-polynomial is redundant at this
step since it cannot lead to a drop of a leading monomial.



Partitioning I

The Partial enlargement technique was introduced in MXL2 and applied
in MXL3. Instead of multiplying every polynomial fi ∈ F by all variables
in F[x0, . . . , xn−1] only a subset LV(F , x) is considered, where x increases
with every iteration if no Mutants were founds.



Partitioning II

This corresponds to selecting a subset of S-polynomials of minimal
degree in Sel instead of selecting all polynomials of minimal degree.

For example, both PolyBoRi [BD07] and Magma [BCP97]
provide an option to restrict the number of S-polynomials considered
in each iteration using some fixed constant.

However, the strategies how to select a subset are slightly different.

Both strategies always pick the smallest S-polynomials.

Magma and PolyBoRi pick up to a fixed number of S-polynomials

MXL3 picks a variable number of S-polynomials depending on the
number of S-polynomials in a given partition.



Conclusion

We have shown, that the Mutant strategy is a redundant variant of
the Normal Selection strategy as used in F4.

We have shown that the Partitioning or Partial Enlargement
Technique used in MXL2 and following algorithms is a equivalent to
selecting a subset of S-polynomials in F4 implementations. However,
the strategy how to select the size of the subsets are different in
well-known F4 implementations and MXL3.

Since XL is a redundant variant of the F4 algorithm and by mapping
all novel concepts to their Gröbner basis equivalent, we conclude
that the MXL family of algorithms are variants of the F4 algorithm.

We thus expect that the performance of implementations of the MXL
family of algorithms can be improved considerably by introducing the
notion of critical pairs and Buchberger’s criteria for avoiding useless pairs.



Thank you for your attention

Mutants are people too!
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