Algorithms \& Techniques for Dense Linear Algebra over Small Finite Fields

Martin R. Albrecht
(martinralbrecht+summerschool@googlemail.com)
POLSYS Team, UPMC, Paris, France
ECrypt II PhD Summer School

Outline

$$
\begin{aligned}
& \mathbb{F}_{2} \\
& \quad \text { Gray Codes } \\
& \quad \text { Multiplication } \\
& \quad \text { Elimination } \\
& \mathbb{F}_{p} \\
& \mathbb{F}_{2^{e}} \\
& \quad \text { Precomputation Tables } \\
& \text { Karatsuba Multiplication } \\
& \text { Performance } \\
& \mathbb{F}_{p}[x]
\end{aligned}
$$

Outline

$$
\mathbb{F}_{2}
$$

Gray Codes

Multiplication

Elimination

\mathbb{F}_{p}
$\mathbb{F}_{2}{ }^{\mathrm{e}}$
Precomputation Tables
Karatsuba Multiplication
Performance
$\mathbb{F}_{p}[x]$

The M4RI Library

- available under the GPL Version 2 or later (GPLv2+)
- provides basic arithmetic (addition, equality testing, stacking, augmenting, sub-matrices, randomisation, etc.)
- asymptotically fast multiplication
- asymptotically fast elimination
- some multi-core support
- Linux, Mac OS X (x86 and PPC), OpenSolaris (Sun Studio Express) and Windows (Cygwin)

http://m4ri.sagemath.org

- field with two elements.
- logical bitwise XOR is addition.
- logical bitwise AND is multiplication.
- 64 (128) basic operations in at most one CPU cycle

		\oplus	\odot
0	0	0	0
0	1	1	0
1	0	1	0
1	1	0	1

- . . . arithmetic rather cheap

Memory access is the expensive operation, not arithmetic.

Outline

$$
\begin{aligned}
& \mathbb{F}_{2} \\
& \quad \text { Gray Codes } \\
& \quad \text { Multiplication } \\
& \quad \text { Elimination } \\
& \mathbb{F}_{p} \\
& \mathbb{F}_{2^{e}} \\
& \quad \text { Precomputation Tables } \\
& \quad \text { Karatsuba Multiplication } \\
& \quad \text { Performance } \\
& \mathbb{F}_{p}[x]
\end{aligned}
$$

Gray Codes

The Gray code [Gra53], named after Frank Gray and also known as reflected binary code, is a numbering system where two consecutive values differ in only one digit.

Gray Code Examples

Applications

Gray codes are used in various applications where all vectors over small finite fields need to be enumerated, such as:

- matrix multiplication;
- fast exhaustive search of Boolean polynomial systems;
- cube attacks on Grain-128.

[^0]
Outline

$$
\begin{aligned}
& \mathbb{F}_{2} \\
& \quad \text { Gray Codes } \\
& \quad \text { Multiplication } \\
& \quad \text { Elimination } \\
& \mathbb{F}_{p} \\
& \mathbb{F}_{2^{e}} \\
& \quad \text { Precomputation Tables } \\
& \quad \text { Karatsuba Multiplication } \\
& \quad \text { Performance } \\
& \mathbb{F}_{p}[x]
\end{aligned}
$$

M4RM [ADKF70] I

Consider $C=A \cdot B(A$ is $m \times \ell$ and B is $\ell \times n)$.
A can be divided into ℓ / k vertical "stripes"

$$
A_{0} \ldots A_{(\ell-1) / k}
$$

of k columns each. B can be divided into ℓ / k horizontal "stripes"

$$
B_{0} \ldots B_{(\ell-1) / k}
$$

of k rows each. We have:

$$
C=A \cdot B=\sum_{0}^{(\ell-1) / k} A_{i} \cdot B_{i} .
$$

M4RM [ADKF70] II

$$
\begin{gathered}
A=\left(\begin{array}{llll}
1 & 1 & 0 & 1 \\
0 & 0 & 0 & 0 \\
1 & 1 & 1 & 1 \\
0 & 1 & 1 & 1
\end{array}\right), B=\left(\begin{array}{llll}
1 & 0 & 1 & 1 \\
0 & 1 & 1 & 0 \\
0 & 1 & 1 & 0 \\
0 & 1 & 0 & 1
\end{array}\right), A_{0}=\left(\begin{array}{ll}
1 & 1 \\
0 & 0 \\
1 & 1 \\
0 & 1
\end{array}\right) \\
A_{1}=\left(\begin{array}{ll}
0 & 1 \\
0 & 0 \\
1 & 1 \\
1 & 1
\end{array}\right), B_{0}=\left(\begin{array}{llll}
1 & 0 & 1 & 1 \\
0 & 1 & 1 & 0
\end{array}\right), B_{1}=\left(\begin{array}{llll}
0 & 1 & 1 & 0 \\
0 & 1 & 0 & 1
\end{array}\right) \\
A_{0} \cdot B_{0}=\left(\begin{array}{llll}
1 & 1 & 0 & 1 \\
0 & 0 & 0 & 0 \\
1 & 1 & 0 & 1 \\
0 & 1 & 1 & 0
\end{array}\right), A_{1} \cdot B_{1}=\left(\begin{array}{llll}
0 & 1 & 0 & 1 \\
0 & 0 & 0 & 0 \\
0 & 0 & 1 & 1 \\
0 & 0 & 1 & 1
\end{array}\right)
\end{gathered}
$$

M4RM: Algorithm $\mathcal{O}\left(n^{3} / \log n\right)$

1 begin

2	$C \longleftarrow$ create an $m \times n$ matrix with all entries $0 ;$
3	$k \longleftarrow\lfloor\log n\rfloor ;$
4	for $0 \leq i<(\ell / k)$ do

// create table of $2^{k}-1$ linear combinations
$T \leftarrow \operatorname{MakeTable}(B, i \times k, 0, k) ;$
for $0 \leq j<m$ do
// read index for table T
$i d \longleftarrow \operatorname{ReadBits}(A, j, i \times k, k)$; add row id from T to row j of C;

9 return C;
Algorithm 1: M4RM

Strassen-Winograd [Str69] Multiplication

- fastest known pratical algorithm
- complexity: $\mathcal{O}\left(n^{\log _{2} 7}\right)$
- linear algebra constant: $\omega=\log _{2} 7$
- M4RM can be used as base case for small dimensions
\rightarrow optimisation of this base case

Cache Friendly M4RM I

1 begin

Cache Friendly M4RM II

1 begin

$t>1$ Gray Code Tables I

- actual arithmetic is quite cheap compared to memory reads and writes
- the cost of memory accesses greatly depends on where in memory data is located
- try to fill all of L1 with Gray code tables.
- Example: $k=10$ and 1 Gray code table $\rightarrow 10$ bits at a time. $k=9$ and 2 Gray code tables, still the same memory for the tables but deal with 18 bits at once.
- The price is one extra row addition, which is cheap if the operands are all in cache.

$t>1$ Gray Code Tables II

1 begin
$2 \quad C \longleftarrow$ create an $m \times n$ matrix with all entries 0 ;
3 for $0 \leq i<(\ell /(2 k))$ do
$T_{0} \leftarrow \operatorname{MAKETABLE}(B, i \times 2 k, 0, k)$;
$T_{1} \leftarrow \operatorname{MAKETABLE}(B, i \times 2 k+k, 0, k)$;
for $0 \leq j<m$ do
$i d_{0} \longleftarrow \operatorname{ReadBits}(A, j, i \times 2 k, k) ;$
$i d_{1} \longleftarrow \operatorname{READBits}(A, j, i \times 2 k+k, k)$;
add row $i d_{0}$ from T_{0} and row $i d_{1}$ from T_{1} to row j of C;

Performance: Multiplication

Figure: 2.66 Ghz Intel i7, 4GB RAM

Outline

$$
\begin{aligned}
& \mathbb{F}_{2} \\
& \quad \text { Gray Codes } \\
& \quad \text { Multiplication } \\
& \quad \text { Elimination } \\
& \mathbb{F}_{p} \\
& \mathbb{F}_{2^{e}} \\
& \quad \text { Precomputation Tables } \\
& \quad \text { Karatsuba Multiplication } \\
& \quad \text { Performance } \\
& \mathbb{F}_{p}[x]
\end{aligned}
$$

PLE Decomposition I

Definition (PLE)

> Let A be a $m \times n$ matrix over a field K. A PLE decomposition of A is a triple of matrices P, L and E such that P is a $m \times m$ permutation matrix, L is a unit lower triangular matrix, and E is
> a $m \times n$ matrix in row-echelon form, and

$$
A=P L E .
$$

PLE decomposition can be in-place, that is L and E are stored in A and P is stored as an m-vector.

PLE Decomposition II

From the PLE decomposition we can

- read the rank r,
- read the row rank profile (pivots),
- compute the null space,
- solve $y=A x$ for x and
- compute the (reduced) row echelon form.
E. C.-P. Jeannerod, C. Pernet, and A. Storjohann. Rank-profile revealing Gaussian elimination and the CUP matrix decomposition.
arXiv:1112.5717, 35 pages, 2012.

Block Recursive PLE Decomposition $\mathcal{O}\left(n^{\omega}\right)$ I

Block Recursive PLE Decomposition $\mathcal{O}\left(n^{\omega}\right)$ II

Block Recursive PLE Decomposition $\mathcal{O}\left(n^{\omega}\right)$ III

Block Recursive PLE Decomposition $\mathcal{O}\left(n^{\omega}\right)$ IV

$$
4 \square>4 \text { 司 }>4 \text { 三ㅡ }>\text { 三ㅡ }
$$

Block Recursive PLE Decomposition $\mathcal{O}\left(n^{\omega}\right) \mathrm{V}$

Block Recursive PLE Decomposition $\mathcal{O}\left(n^{\omega}\right)$ VI

Block Iterative PLE Decomposition I

We need an efficient base case for PLE Decomposition

- block recursive PLE decomposition gives rise to a block iterative PLE decomposition
- choose blocks of size $k=\log n$ and use M4RM for the "update" multiplications
- this gives a complexity $\mathcal{O}\left(n^{3} / \log n\right)$

Block Iterative PLE Decomposition II

Block Iterative PLE Decomposition III

Block Iterative PLE Decomposition IV

Block Iterative PLE Decomposition V

Block Iterative PLE Decomposition VI

Block Iterative PLE Decomposition VII

Block Iterative PLE Decomposition VIII

Block Iterative PLE Decomposition IX

Block Iterative PLE Decomposition X

[^1]
Block Iterative PLE Decomposition XI

Performance: Reduced Row Echelon Form

Figure: 2.66 Ghz Intel i7, 4GB RAM

Performance: Row Echelon Form

Using one core - on sage.math - we can compute the echelon form of a $500,000 \times 500,000$ dense random matrix over \mathbb{F}_{2} in

$$
9711 \text { seconds }=2.7 \text { hours }\left(c \approx 10^{-12}\right) .
$$

Using four cores decomposition we can compute the echelon form of a random dense $500,000 \times 500,000$ matrix in

3806 seconds $=1.05$ hours.

Caveat: Sensitivity to Sparsity

Figure: Gaussian elimination of $10,000 \times 10,000$ matrices on Intel 2.33GHz Xeon E5345 comparing Magma 2.17-12 and M4RI 20111004.

Caveat: Linear Algebra for Gröbner Basis

Problem	matrix dimensions	density	PLE	M4RI	GB
HFE 25 matrix 5 (5.1M)	12307×13508	0.07600	1.03	0.59	0.81
HFE 30 matrix 5 (16M)	19907×29323	0.06731	4.79	2.70	4.76
HFE 35 matrix 5 (37M)	29969×55800	0.05949	19.33	9.28	19.51
Mutant matrix (39M)	26075×26407	0.18497	5.71	3.98	2.10
random n=24, m=26 matrix 3 (30M)	37587×38483	0.03832	20.69	21.08	19.36
random n=24, m=26 matrix 4 (24M)	37576×32288	0.04073	18.65	28.44	17.05
SR(2,2,2,4) compressed, matrix 2 (328K)	5640×14297	0.00333	0.40	0.29	0.18
SR(2,2,2,4) compressed, matrix 4 (2.4M)	13665×17394	0.01376	2.18	3.04	2.04
SR(2,2,2,4) compressed, matrix 5 (2.8M)	11606×16282	0.03532	1.94	4.46	1.59
SR(2,2,2,4) matrix $6(1.4 M)$	13067×17511	0.00892	1.90	2.09	1.38
SR(2,2,2,4) matrix 7 $(1.7 \mathrm{M})$	12058×16662	0.01536	1.53	1.93	1.66
SR(2,2,2,4) matrix 9 $(36 M)$	115834×118589	0.00376	528.21	578.54	522.98

Outline

\mathbb{F}_{2}
Gray CodesMultiplication
Elimination
$\mathbb{F}_{p}$$\mathbb{F}_{2^{e}}$
Precomputation Tables
Karatsuba Multiplication
Performance
$\mathbb{F}_{p}[x]$

$p<2^{23}$

- For medium sized primes your best bet is LinBox or more precisely FFLAS/FFPACK (C++ libraries).
- It reduces computations $\bmod p$ to computations with floating point numbers.
- On top of that it implements asymptotically fast techniques (Strassen, PLE, ...).

p very small: Packing

- If p is small, you can pack several entries into one machine word. If there is enough zero padding these remain independent.
- There exists code to do this by the LinBox people but it's not in LinBox (yet).

p very small: Slicing

If $p \in(3,5,7)$ you can bit-slice your entries and implement the boolean circuit to perform arithmetic on machine words. If your prime has k-bits and you want to represent n elements, you'd represent your elements as k bitstrings of length n.

Example

> Represent \mathbb{F}_{3} as $0:[0,0], 1:[1,0],-1:[1,1]$. To add two elements [x_{0}, x_{1}] and $\left[y_{0}, y_{1}\right]$ compute: $s \leftarrow x_{0} \oplus y_{1}, t \leftarrow x_{1} \oplus y_{0}$ and return $\left[s \wedge t,\left(s \oplus x_{1}\right) \vee\left(t \oplus y_{1}\right)\right]$.

Unfortunately, there is no ready-made library available yet which implements this (but there is some proof-of-concept code by Tom Boothby).

Outline

 \(\mathbb{F}_{2}\)
 Gray Codes
 Multiplication
 Elimination
 \(\mathbb{F}_{p}\)
 \(\mathbb{F}_{2^{e}}\)
 Precomputation Tables
 Karatsuba Multiplication
 Performance
 $\mathbb{F}_{p}[x]$

The M4RIE Library

- handles $\mathbb{F}_{2^{e}}$ for $2 \leq e \leq 10 ; e \leq 16$ planned.
- available under the GPL Version 2 or later (GPLv2+)
- provides basic arithmetic (addition, equality testing, stacking, augmenting, sub-matrices, randomisation, etc.)
- implements asymptotically fast multiplication
- implements asymptotically fast elimination
- Linux, Mac OS X (x86 and PPC), OpenSolaris, and Windows (Cygwin)
http://m4ri.sagemath.org

Representation of Elements I

Elements in $\mathbb{F}_{2^{e}} \cong \mathbb{F}_{2}[x] / f$ can be written as

$$
a_{0} \alpha^{0}+a_{1} \alpha^{1}+\cdots+a_{e-1} \alpha^{e-1} .
$$

We identify the bitstring a_{0}, \ldots, a_{e-1} with

- the element $\sum_{i=0}^{e-1} a_{i} \alpha^{i} \in \mathbb{F}_{2^{e}}$ and
- the integer $\sum_{i=0}^{e-1} a_{i} 2^{i}$.

In the datatype mzed_t we pack several of those bitstrings into one machine word:
$a_{0,0,0}, \ldots, a_{0,0, e-1}, a_{0,1,0}, \ldots, a_{0,1, e-1}, \ldots, a_{0, n-1,0}, \ldots, a_{0, n-1, e-1}$.

Additions are cheap, scalar multiplications are expensive.

Representation of Elements II

- Instead of representing matrices over $\mathbb{F}_{2^{e}}$ as matrices over polynomials we may represent them as polynomials with matrix coefficients.
- For each degree we store matrices over \mathbb{F}_{2} which hold the coefficients for this degree.
- The data type mzd_slice_t for matrices over $\mathbb{F}_{2^{e}}$ internally stores e-tuples of M4RI matrices, i.e., matrices over \mathbb{F}_{2}.

Additions are cheap, scalar multiplications are expensive.

Representation of Elements III

$$
\begin{aligned}
A & =\left(\begin{array}{cc}
\alpha^{2}+1 & \alpha \\
\alpha+1 & 1
\end{array}\right) \\
& =\left[\begin{array}{ll}
\square 101 & \square 010 \\
\square 011 & \square 001
\end{array}\right] \\
& =\left(\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right],\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right],\left[\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right]\right)
\end{aligned}
$$

Figure: 2×2 matrix over \mathbb{F}_{8}

Outline

$$
\begin{aligned}
& \mathbb{F}_{2} \\
& \quad \text { Gray Codes } \\
& \quad \text { Multiplication } \\
& \quad \text { Elimination } \\
& \mathbb{F}_{p} \\
& \mathbb{F}_{2^{e}} \\
& \quad \text { Precomputation Tables } \\
& \text { Karatsuba Multiplication } \\
& \quad \text { Performance } \\
& \mathbb{F}_{p}[x]
\end{aligned}
$$

The idea I

Input: $A-m \times n$ matrix
Input: $B-n \times k$ matrix
1 begin
2 for $0 \leq i<m$ do for $0 \leq j<n$ do
$C_{j} \longleftarrow C_{j}+A_{j, i} \times B_{i} ;$
return C;

The idea II

Input: $A-m \times n$ matrix
Input: $B-n \times k$ matrix
1 begin
2 for $0 \leq i<m$ do
$3 \quad$ for $0 \leq j<n$ do
$4 \quad \quad L C_{j} \longleftarrow C_{j}+A_{j, i} \times B_{i} ; / /$ cheap
5 return C;

The idea III

Input: $A-m \times n$ matrix
Input: $B-n \times k$ matrix
1 begin
2 for $0 \leq i<m$ do
$3 \quad$ for $0 \leq j<n$ do
$4 \quad \quad L C_{j} \longleftarrow C_{j}+A_{j, i} \times B_{i} ; / /$ expensive
5 return C;

The idea IV

Input: $A-m \times n$ matrix
Input: $B-n \times k$ matrix
1 begin
2 for $0 \leq i<m$ do for $0 \leq j<n$ do
$\left\lfloor C_{j} \longleftarrow C_{j}+A_{j, i} \times B_{i} ; / /\right.$ expensive
return C;

But there are only 2^{e} possible multiples of B_{i}.

The idea V

1 begin

	Input: A
2	Input: $B-n \times k$ matrix for $0 \leq i<m$ do
3	for $0 \leq j<2^{e}$ do
4	$T_{j} \longleftarrow j \times B_{i} ;$
5	for $0 \leq j<n$ do
6	$\begin{aligned} & x \longleftarrow A_{j, i} ; \\ & C_{j} \longleftarrow C_{j}+T_{x} ; \end{aligned}$
8	return C

$m \cdot n \cdot k$ additions, $m \cdot 2^{e} \cdot k$ multiplications.

Gaussian elimination \& PLE decomposition

Input: $A-m \times n$ matrix
1 begin

2	$r \longleftarrow 0 ;$
3	for $0 \leq j<n$ do
4	\quad for $r \leq i<m$ do

 \(T \longleftarrow\) multiplication table for row \(r\) of \(A\);
 for \(r+1 \leq k<m\) do
 \(x \longleftarrow A_{k, j} ;\)
 \(A_{k} \longleftarrow A_{k}+T_{x} ;\)
 \(r \longleftarrow r+1 ;\)
 return \(r\);

Outline

$$
\begin{aligned}
& \mathbb{F}_{2} \\
& \quad \text { Gray Codes } \\
& \quad \text { Multiplication } \\
& \quad \text { Elimination } \\
& \mathbb{F}_{p} \\
& \mathbb{F}_{2^{e}} \\
& \quad \text { Precomputation Tables } \\
& \quad \text { Karatsuba Multiplication } \\
& \text { Performance } \\
& \mathbb{F}_{p}[x]
\end{aligned}
$$

The idea

- Consider $\mathbb{F}_{2^{2}}$ with the primitive polynomial $f=x^{2}+x+1$.
- We want to compute $C=A \cdot B$.
- Rewrite A as $A_{0} x+A_{1}$ and B as $B_{0} x+B_{1}$.
- The product is

$$
C=A_{0} B_{0} x^{2}+\left(A_{0} B_{1}+A_{1} B_{0}\right) x+A_{1} B_{1} .
$$

- Reduction modulo f gives

$$
C=\left(A_{0} B_{0}+A_{0} B_{1}+A_{1} B_{0}\right) x+A_{1} B_{1}+A_{0} B_{0} .
$$

- This last expression can be rewritten as

$$
C=\left(\left(A_{0}+A_{1}\right)\left(B_{0}+B_{1}\right)+A_{1} B_{1}\right) x+A_{1} B_{1}+A_{0} B_{0} .
$$

Thus this multiplication costs 3 multiplications and 4 adds over \mathbb{F}_{2}.

Outline

$$
\begin{aligned}
& \mathbb{F}_{2} \\
& \quad \text { Gray Codes } \\
& \quad \text { Multiplication } \\
& \quad \text { Elimination } \\
& \mathbb{F}_{p} \\
& \mathbb{F}_{2^{e}} \\
& \quad \text { Precomputation Tables } \\
& \text { Karatsuba Multiplication } \\
& \text { Performance } \\
& \mathbb{F}_{p}[x]
\end{aligned}
$$

Performance: Multiplication

e	Magma $2.15-10$	GAP 4.4 .12	SW-NJ	SW-NJ/ M4RI	[Mon05]	Bitslice	Bitslice/ M4RI
1	0.100 s	0.244 s	-	1	1	0.071 s	1.0
2	1.220 s	12.501 s	0.630 s	8.8	3	0.224 s	3.1
3	2.020 s	35.986 s	1.480 s	20.8	6	0.448 s	6.3
4	5.630 s	39.330 s	1.644 s	23.1	9	0.693 s	9.7
5	94.740 s	86.517 s	3.766 s	53.0	13	1.005 s	14.2
6	89.800 s	85.525 s	4.339 s	61.1	17	1.336 s	18.8
7	82.770 s	83.597 s	6.627 s	93.3	22	1.639 s	23.1
8	104.680 s	83.802 s	10.170 s	143.2	27	2.140 s	30.1

Table: Multiplication of $4,000 \times 4,000$ matrices over $\mathbb{F}_{2^{e}}$

Performance: Reduced Row Echelon Forms

e	Magma $2.15-10$	GAP 4.4 .12	LinBox $(\bmod p) 1.1 .6$	M4RIE 6b24b839a46f
2	6.04 s	162.65 s	49.52 s	3.31 s
3	14.47 s	442.52 s	49.92 s	5.33 s
4	60.37 s	502.67 s	50.91 s	6.33 s
5	659.03 s	N/A	51.20 s	10.51 s
6	685.46 s	N/A	51.61 s	13.08 s
7	671.88 s	N/A	53.94 s	17.29 s
8	840.22 s	N/A	64.24 s	20.25 s
9	1630.38 s	N/A	76.18 s	260.77 s
10	1631.35 s	N/A	76.45 s	291.30 s

Table: Elimination of $10,000 \times 10,000$ matrices on 2.66 Ghz i7

Outline

$$
\begin{aligned}
& \mathbb{F}_{2} \\
& \quad \text { Gray Codes } \\
& \quad \text { Multiplication } \\
& \quad \text { Elimination } \\
& \mathbb{F}_{p} \\
& \mathbb{F}_{2^{e}} \\
& \quad \text { Precomputation Tables } \\
& \quad \text { Karatsuba Multiplication } \\
& \quad \text { Performance } \\
& \mathbb{F}_{p}[x]
\end{aligned}
$$

Prime-slicing

- The idea of bitsliced Karatsuba multiplication can be trivially extended to $\mathbb{F}_{p^{e}}$ and $\mathbb{F}_{p}[x]$ for $p>2$.
- That is, we represent $\left(\mathbb{F}_{p}[x]\right)^{m \times n}$ as $\mathbb{F}_{p}^{m \times n}[x]$ and
- use non-commutative Karatsuba-style formulas for multiplications in $\mathbb{F}_{p}[x]$.

Finding Formulas: Evaluation-Interpolation Schemes I

$f, g \in \mathbb{F}_{2^{e}}$, we

- consider them as polynomials $f(x), g(x)$ in $\mathbb{F}_{2}[x]$;
- evaluate those polynomials on sufficiently many points (possibly over some extension of \mathbb{F}_{2}),
- perform pointwise multiplication and
- interpolate $(f \cdot g)(x)$ from those points.

Finding Formulas: Evaluation-Interpolation Schemes II

Example: We multiply $f, g \in \mathbb{F}_{2^{3}}$, i.e., we are searching for

$$
h(x)=f(x) \cdot g(x)
$$

We compute $h(x) \bmod p(x)$ where $\operatorname{deg}(p(x))>\operatorname{deg}(h(x))$ such that $h(x) \bmod p(x)=h(x)$ and set

$$
p(x)=(x+\infty) \cdot(x) \cdot(x+1) \cdot\left(x^{2}+x+1\right) .
$$

That is, we compute modulo the factors of $p(x)$ and reconstruct the result using the Chinese remainder theorem. Multiplication modulo $(x+c)$ costs one in \mathbb{F}_{2}, modulo $x^{2}+x+1$ it costs 3 in \mathbb{F}_{2}. The total cost is 6 multiplications in \mathbb{F}_{2}.

Finding Formulas: Evaluation-Interpolation Schemes III

We can improve this strategy.
Example: We consider $f, g \in \mathbb{F}_{2^{11}}$. Instead of computing the solution modulo the product of irreducible polynomials

$$
\begin{aligned}
p(x)= & (x+\infty) \cdot(x) \cdot(x+1) \cdot\left(x^{3}+x+1\right) \cdot\left(x^{3}+x^{2}+1\right) . \\
& \left(x^{4}+x+1\right) \cdot\left(x^{4}+x^{3}+1\right) \cdot\left(x^{4}+x^{3}+x^{2}+x+1\right)
\end{aligned}
$$

with cost $3+2 \cdot 6+3 \cdot 9=42$, we compute modulo

$$
\begin{aligned}
p(x)= & (x+\infty) \cdot\left(x^{2}\right) \cdot(x+1)^{2} \cdot\left(x^{2}+x+1\right) \cdot\left(x^{3}+x+1\right) . \\
& \left(x^{3}+x^{2}+1\right) \cdot\left(x^{4}+x+1\right) \cdot\left(x^{4}+x^{3}+1\right) .
\end{aligned}
$$

This only costs $1+3 \cdot 3+2 \cdot 6+2 \cdot 9=40$ multiplications over \mathbb{F}_{2}.

Finding Formulas: Evaluation-Interpolation Schemes IV

How to find a good $p(x)$ for some degree $e ? \Rightarrow$ We express this as a mixed integer linear program.

Let c be a table holding costs of polynomial multiplication, such that c_{d} is the cost of multiplying two polynomials modulo some polynomial of degree d : $c_{0}=0, c_{1}=1, c_{2}=3, \ldots$

Also, let

$$
G_{p}(d):=\frac{1}{d} \sum_{d_{i} \mid d} \mu\left(d / d_{i}\right) p^{d_{i}}
$$

be the function which returns the number of irreducible polynomials of degree d over \mathbb{F}_{p}.

Finding Formulas: Evaluation-Interpolation Schemes V

We want to minimize the function

$$
\begin{equation*}
1+\sum_{d=1}^{\left\lceil\log _{2}(2 e)\right\rceil} c_{d} n_{d} \tag{1}
\end{equation*}
$$

where n_{d} are number of degree d factors (+1 for $x+\infty$).
Our n_{d} must satisfy $\operatorname{deg}(p(x)) \geq 2 e-1$

$$
\sum_{i=1}^{\left\lceil\log _{2}(2 e)\right\rceil} n_{d} \cdot d \geq 2 e-2
$$

Finding Formulas: Evaluation-Interpolation Schemes VI

We also have

$$
\begin{equation*}
0 \leq \sum_{i \in D(d)} n_{i} \leq \sum_{i \in D(d)} G_{p}(i) \tag{3}
\end{equation*}
$$

for $1 \leq d \leq\left\lceil\log _{2}(2 e)\right\rceil$ where $D(d)$ is defined as:

$$
D(d)=\left\{\begin{array}{cl}
\{d\} & \text { if } d \text { is odd } \\
\{d\} \cup D(d / 2) & \text { else }
\end{array}\right.
$$

Minimizing (1) under the constraints (2) and (3), returns a $p(x)$ given by n_{i}.

This is a very simple mixed integer linear program and solving it for very large e is easy.

Finding Formulas: Evaluation-Interpolation Schemes VII

Adding a trick about field embeddings we get the follwing table.

e	\mathbb{F}_{2}	\mathbb{F}_{3}	\mathbb{F}_{17}	\mathbb{F}_{39}	\mathbb{F}_{251}
10	33	27	20	19	19
100	532	454	290	279	199
1000	6430	5455	3844	2997	2873
10000	71425	62845	43543	39217	29873
100000	755554	679861	474276	434007	355494

Table: Upper bounds on mul. in \mathbb{F}_{p} for $f \cdot g \in \mathbb{F}_{p^{e}}$.

Note

There are sometimes better bounds known in the literature, the point here is that we can compute explicit formulas quickly.

Fin
E. V. Arlazarov, E. Dinic, M. Kronrod, and I. Faradzev. On economical construction of the transitive closure of a directed graph.
Dokl. Akad. Nauk., 194(11), 1970.
(in Russian), English Translation in Soviet Math Dokl.
E Frank Gray.
Pulse code communication, March 1953.
US Patent No. 2,632,058.
E. Peter L. Montgomery.

Five, six, and seven-term Karatsuba-like formulae.
IEEE Trans. on Computers, 53(3):362-369, 2005.
E Volker Strassen.
Gaussian elimination is not optimal.
Nummerische Mathematik, 13:354-256, 1969.

[^0]: Gray codes are a pretty basic part of the cryptographer's toolkit because they allow to reduce the cost of enumerating all vectors over \mathbb{F}_{2} of length n from $n 2^{n}-1$ to $2^{n}-1$.

[^1]:

