
Algorithms & Techniques for Dense Linear
Algebra over Small Finite Fields

Martin R. Albrecht
(martinralbrecht+summerschool@googlemail.com)

POLSYS Team, UPMC, Paris, France

ECrypt II PhD Summer School



Outline
F2

Gray Codes
Multiplication
Elimination

Fp

F2e

Precomputation Tables
Karatsuba Multiplication
Performance

Fp[x ]



Outline
F2

Gray Codes
Multiplication
Elimination

Fp

F2e

Precomputation Tables
Karatsuba Multiplication
Performance

Fp[x ]



The M4RI Library

I available under the GPL Version 2 or later (GPLv2+)

I provides basic arithmetic (addition, equality testing, stacking,
augmenting, sub-matrices, randomisation, etc.)

I asymptotically fast multiplication

I asymptotically fast elimination

I some multi-core support

I Linux, Mac OS X (x86 and PPC), OpenSolaris (Sun Studio
Express) and Windows (Cygwin)

http://m4ri.sagemath.org

http://m4ri.sagemath.org


F2

I field with two elements.

I logical bitwise XOR is
addition.

I logical bitwise AND is
multiplication.

I 64 (128) basic operations in
at most one CPU cycle

I . . . arithmetic rather cheap

⊕ �
0 0 0 0
0 1 1 0
1 0 1 0
1 1 0 1

Memory access is the expensive operation, not arithmetic.



Outline
F2

Gray Codes
Multiplication
Elimination

Fp

F2e

Precomputation Tables
Karatsuba Multiplication
Performance

Fp[x ]



Gray Codes

The Gray code [Gra53], named after Frank Gray and also known as
reflected binary code, is a numbering system where two
consecutive values differ in only one digit.



Gray Code Examples

0
1

0 0 ⇓
0 1
1 1
1 0 ⇑

0 0 0
0 0 1
0 1 1
0 1 0
1 1 0
1 1 1
1 0 1
1 0 0

0 0 0 0
0 0 0 1
0 0 1 1
0 0 1 0
0 1 1 0
0 1 1 1
0 1 0 1
0 1 0 0
1 1 0 0
1 1 0 1
1 1 1 1
1 1 1 0
1 0 1 0
1 0 1 1
1 0 0 1
1 0 0 0



Applications

Gray codes are used in various applications where all vectors over
small finite fields need to be enumerated, such as:

I matrix multiplication;

I fast exhaustive search of Boolean polynomial systems;

I cube attacks on Grain-128.

Gray codes are a pretty basic part of the cryptographer’s toolkit
because they allow to reduce the cost of enumerating all vectors
over F2 of length n from n2n − 1 to 2n − 1.



Outline
F2

Gray Codes
Multiplication
Elimination

Fp

F2e

Precomputation Tables
Karatsuba Multiplication
Performance

Fp[x ]



M4RM [ADKF70] I

Consider C = A · B (A is m × ` and B is `× n).

A can be divided into `/k vertical “stripes”

A0 . . .A(`−1)/k

of k columns each. B can be divided into `/k horizontal “stripes”

B0 . . .B(`−1)/k

of k rows each. We have:

C = A · B =

(`−1)/k∑
0

Ai · Bi .



M4RM [ADKF70] II

A =


1 1 0 1
0 0 0 0
1 1 1 1
0 1 1 1

 ,B =


1 0 1 1
0 1 1 0
0 1 1 0
0 1 0 1

 ,A0 =


1 1
0 0
1 1
0 1



A1 =


0 1
0 0
1 1
1 1

 ,B0 =

(
1 0 1 1
0 1 1 0

)
,B1 =

(
0 1 1 0
0 1 0 1

)

A0 · B0 =


1 1 0 1
0 0 0 0
1 1 0 1
0 1 1 0

 ,A1 · B1 =


0 1 0 1
0 0 0 0
0 0 1 1
0 0 1 1





M4RM: Algorithm O
(
n3/ log n

)
1 begin
2 C ←− create an m × n matrix with all entries 0;
3 k ←− blog nc;
4 for 0 ≤ i < (`/k) do

// create table of 2k − 1 linear combinations
5 T ← MakeTable(B, i × k , 0, k);
6 for 0 ≤ j < m do

// read index for table T
7 id ←− ReadBits(A, j , i × k, k);
8 add row id from T to row j of C ;

9 return C ;

Algorithm 1: M4RM



Strassen-Winograd [Str69] Multiplication

I fastest known pratical algorithm

I complexity: O
(
nlog2 7

)
I linear algebra constant: ω = log2 7

I M4RM can be used as base case for small dimensions

→ optimisation of this base case



Cache Friendly M4RM I

1 begin
2 C ←− create an m × n matrix with all entries 0;
3 for 0 ≤ i < (`/k) do

// this is cheap in terms of memory access
4 T ← MakeTable(B, i × k , 0, k);
5 for 0 ≤ j < m do

// for each load of row j we take care of only k bits
6 id ←− ReadBits(A, j , i × k , k);
7 add row id from T to row j of C ;

8 return C ;



Cache Friendly M4RM II

1 begin
2 C ←− create an m × n matrix with all entries 0;
3 for 0 ≤ start < m/bs do
4 for 0 ≤ i < (`/k) do

// we regenerate T for each block
5 T ← MakeTable(B, i × k , 0, k);
6 for 0 ≤ s < bs do
7 j ←− start × bs + s;
8 id ←− ReadBits(A, j , i × k , k);
9 add row id from T to row j of C ;

10 return C ;



t > 1 Gray Code Tables I

I actual arithmetic is quite cheap compared to memory reads
and writes

I the cost of memory accesses greatly depends on where in
memory data is located

I try to fill all of L1 with Gray code tables.

I Example: k = 10 and 1 Gray code table → 10 bits at a time.
k = 9 and 2 Gray code tables, still the same memory for the
tables but deal with 18 bits at once.

I The price is one extra row addition, which is cheap if the
operands are all in cache.



t > 1 Gray Code Tables II

1 begin
2 C ←− create an m × n matrix with all entries 0;
3 for 0 ≤ i < (`/(2k)) do
4 T0 ← MakeTable(B, i × 2k , 0, k);
5 T1 ← MakeTable(B, i × 2k + k , 0, k);
6 for 0 ≤ j < m do
7 id0 ←− ReadBits(A, j , i × 2k , k);
8 id1 ←− ReadBits(A, j , i × 2k + k , k);
9 add row id0 from T0 and row id1 from T1 to row j of C ;

10 return C ;



Performance: Multiplication

Magma

M4RI
ex

ec
u

ti
on

ti
m

e
t

1s

7s

13s

19s

25s

31s

2000 8000 14000 20000 26000

matrix dimension n

Figure: 2.66 Ghz Intel i7, 4GB RAM



Outline
F2

Gray Codes
Multiplication
Elimination

Fp

F2e

Precomputation Tables
Karatsuba Multiplication
Performance

Fp[x ]



PLE Decomposition I

E

L

Definition (PLE)

Let A be a m × n matrix over a
field K . A PLE decomposition of
A is a triple of matrices P, L and
E such that P is a m ×m
permutation matrix, L is a unit
lower triangular matrix, and E is
a m × n matrix in row-echelon
form, and

A = PLE .

PLE decomposition can be in-place, that is L and E are stored in
A and P is stored as an m-vector.



PLE Decomposition II

From the PLE decomposition we can

I read the rank r ,

I read the row rank profile (pivots),

I compute the null space,

I solve y = Ax for x and

I compute the (reduced) row echelon form.

C.-P. Jeannerod, C. Pernet, and A. Storjohann.
Rank-profile revealing Gaussian elimination and the CUP
matrix decomposition.
arXiv:1112.5717, 35 pages, 2012.



Block Recursive PLE Decomposition O(nω) I



Block Recursive PLE Decomposition O(nω) II



Block Recursive PLE Decomposition O(nω) III

ANE ← L−1
NW × ANE



Block Recursive PLE Decomposition O(nω) IV

ASE ← ASE + ASW × ANE



Block Recursive PLE Decomposition O(nω) V



Block Recursive PLE Decomposition O(nω) VI



Block Iterative PLE Decomposition I

We need an efficient base case for PLE Decomposition

I block recursive PLE decomposition gives rise to a block
iterative PLE decomposition

I choose blocks of size k = log n and use M4RM for the
“update” multiplications

I this gives a complexity O
(
n3/ log n

)



Block Iterative PLE Decomposition II



Block Iterative PLE Decomposition III

L



Block Iterative PLE Decomposition IV

ANE ← L−1 × ANE
L



Block Iterative PLE Decomposition V



Block Iterative PLE Decomposition VI

ASE ← ASE + ASW × ANE



Block Iterative PLE Decomposition VII



Block Iterative PLE Decomposition VIII



Block Iterative PLE Decomposition IX

ANE = L−1 × ANE



Block Iterative PLE Decomposition X

ASE = ASE + ASW × ANE



Block Iterative PLE Decomposition XI



Performance: Reduced Row Echelon Form

Magma

M4RI

ex
ec

u
ti

on
ti

m
e
t

1s

7s

13s

19s

25s

31s

2000 8000 14000 20000 26000

matrix dimension n

cM4RI ≈ 4.3 · 10−12

cMAGMA ≈ 6.8 · 10−12

Figure: 2.66 Ghz Intel i7, 4GB RAM



Performance: Row Echelon Form

Using one core – on sage.math – we can compute the echelon form
of a 500, 000× 500, 000 dense random matrix over F2 in

9711 seconds = 2.7 hours (c ≈ 10−12).

Using four cores decomposition we can compute the echelon form
of a random dense 500, 000× 500, 000 matrix in

3806 seconds = 1.05 hours.



Caveat: Sensitivity to Sparsity

ex
ec

u
ti

on
ti

m
e
t

1

2

3

4

5

6

2 6 10 14 18
non-zero elements per row

Magma

M4RI
PLE

Figure: Gaussian elimination of 10, 000× 10, 000 matrices on Intel
2.33GHz Xeon E5345 comparing Magma 2.17-12 and M4RI 20111004.



Caveat: Linear Algebra for Gröbner Basis

Problem matrix dimensions density PLE M4RI GB
HFE 25 matrix 5 (5.1M) 12307 x 13508 0.07600 1.03 0.59 0.81
HFE 30 matrix 5 (16M) 19907 x 29323 0.06731 4.79 2.70 4.76
HFE 35 matrix 5 (37M) 29969 x 55800 0.05949 19.33 9.28 19.51
Mutant matrix (39M) 26075 x 26407 0.18497 5.71 3.98 2.10

random n=24, m=26 matrix 3 (30M) 37587 x 38483 0.03832 20.69 21.08 19.36
random n=24, m=26 matrix 4 (24M) 37576 x 32288 0.04073 18.65 28.44 17.05

SR(2,2,2,4) compressed, matrix 2 (328K) 5640 x 14297 0.00333 0.40 0.29 0.18
SR(2,2,2,4) compressed, matrix 4 (2.4M) 13665 x 17394 0.01376 2.18 3.04 2.04
SR(2,2,2,4) compressed, matrix 5 (2.8M) 11606 x 16282 0.03532 1.94 4.46 1.59

SR(2,2,2,4) matrix 6 (1.4M) 13067 x 17511 0.00892 1.90 2.09 1.38
SR(2,2,2,4) matrix 7 (1.7M) 12058 x 16662 0.01536 1.53 1.93 1.66
SR(2,2,2,4) matrix 9 (36M) 115834 x 118589 0.00376 528.21 578.54 522.98



Outline
F2

Gray Codes
Multiplication
Elimination

Fp

F2e

Precomputation Tables
Karatsuba Multiplication
Performance

Fp[x ]



p < 223

I For medium sized primes your best bet is LinBox or more
precisely FFLAS/FFPACK (C++ libraries).

I It reduces computations modp to computations with floating
point numbers.

I On top of that it implements asymptotically fast techniques
(Strassen, PLE, . . . ).

http://www.linalg.org/

http://www.linalg.org/


p very small: Packing

I If p is small, you can pack several entries into one machine
word. If there is enough zero padding these remain
independent.

I There exists code to do this by the LinBox people but it’s not
in LinBox (yet).



p very small: Slicing

If p ∈ (3, 5, 7) you can bit-slice your entries and implement the
boolean circuit to perform arithmetic on machine words. If your
prime has k-bits and you want to represent n elements, you’d
represent your elements as k bitstrings of length n.

Example

Represent F3 as 0 : [0, 0], 1 : [1, 0],−1 : [1, 1]. To add two elements
[x0, x1] and [y0, y1] compute: s ← x0 ⊕ y1, t ← x1 ⊕ y0 and return
[s ∧ t, (s ⊕ x1) ∨ (t ⊕ y1)].

Unfortunately, there is no ready-made library available yet which
implements this (but there is some proof-of-concept code by Tom
Boothby).



Outline
F2

Gray Codes
Multiplication
Elimination

Fp

F2e

Precomputation Tables
Karatsuba Multiplication
Performance

Fp[x ]



The M4RIE Library

I handles F2e for 2 ≤ e ≤ 10; e ≤ 16 planned.

I available under the GPL Version 2 or later (GPLv2+)

I provides basic arithmetic (addition, equality testing, stacking,
augmenting, sub-matrices, randomisation, etc.)

I implements asymptotically fast multiplication

I implements asymptotically fast elimination

I Linux, Mac OS X (x86 and PPC), OpenSolaris, and Windows
(Cygwin)

http://m4ri.sagemath.org

http://m4ri.sagemath.org


Representation of Elements I

Elements in F2e
∼= F2[x ]/f can be written as

a0α
0 + a1α

1 + · · ·+ ae−1α
e−1.

We identify the bitstring a0, . . . , ae−1 with

I the element
∑e−1

i=0 aiα
i ∈ F2e and

I the integer
∑e−1

i=0 ai2
i .

In the datatype mzed t we pack several of those bitstrings into one
machine word:

a0,0,0, . . . , a0,0,e−1, a0,1,0, . . . , a0,1,e−1, . . . , a0,n−1,0, . . . , a0,n−1,e−1.

Additions are cheap, scalar multiplications are expensive.



Representation of Elements II

I Instead of representing matrices over F2e as matrices over
polynomials we may represent them as polynomials with
matrix coefficients.

I For each degree we store matrices over F2 which hold the
coefficients for this degree.

I The data type mzd slice t for matrices over F2e internally
stores e-tuples of M4RI matrices, i.e., matrices over F2.

Additions are cheap, scalar multiplications are expensive.



Representation of Elements III

A =

(
α2 + 1 α
α + 1 1

)
=

[
�101 �010
�011 �001

]
=

([
1 0
0 0

]
,

[
0 1
1 0

]
,

[
1 0
1 1

])

Figure: 2× 2 matrix over F8



Outline
F2

Gray Codes
Multiplication
Elimination

Fp

F2e

Precomputation Tables
Karatsuba Multiplication
Performance

Fp[x ]



The idea I

Input: A – m × n matrix
Input: B – n × k matrix

1 begin
2 for 0 ≤ i < m do
3 for 0 ≤ j < n do
4 Cj ←− Cj + Aj ,i × Bi ;

5 return C ;



The idea II

Input: A – m × n matrix
Input: B – n × k matrix

1 begin
2 for 0 ≤ i < m do
3 for 0 ≤ j < n do
4 Cj ←− Cj + Aj ,i × Bi ; // cheap

5 return C ;



The idea III

Input: A – m × n matrix
Input: B – n × k matrix

1 begin
2 for 0 ≤ i < m do
3 for 0 ≤ j < n do
4 Cj ←− Cj + Aj ,i×Bi ; // expensive

5 return C ;



The idea IV

Input: A – m × n matrix
Input: B – n × k matrix

1 begin
2 for 0 ≤ i < m do
3 for 0 ≤ j < n do
4 Cj ←− Cj + Aj ,i×Bi ; // expensive

5 return C ;

But there are only 2e possible multiples of Bi .



The idea V

1 begin
Input: A – m × n matrix
Input: B – n × k matrix

2 for 0 ≤ i < m do
3 for 0 ≤ j < 2e do
4 Tj ←− j × Bi ;

5 for 0 ≤ j < n do
6 x ←− Aj ,i ;
7 Cj ←− Cj + Tx ;

8 return C ;

m · n · k additions, m · 2e · k multiplications.



Gaussian elimination & PLE decomposition

Input: A – m × n matrix
1 begin
2 r ←− 0;
3 for 0 ≤ j < n do
4 for r ≤ i < m do
5 if Ai ,j = 0 then continue;
6 rescale row i of A such that Ai ,j = 1;
7 swap the rows i and r in A;
8 T ←− multiplication table for row r of A;
9 for r + 1 ≤ k < m do

10 x ←− Ak,j ;
11 Ak ←− Ak + Tx ;

12 r ←− r + 1;

13 return r ;



Outline
F2

Gray Codes
Multiplication
Elimination

Fp

F2e

Precomputation Tables
Karatsuba Multiplication
Performance

Fp[x ]



The idea

I Consider F22 with the primitive polynomial f = x2 + x + 1.

I We want to compute C = A · B.

I Rewrite A as A0x + A1 and B as B0x + B1.

I The product is

C = A0B0x
2 + (A0B1 + A1B0)x + A1B1.

I Reduction modulo f gives

C = (A0B0 + A0B1 + A1B0)x + A1B1 + A0B0.

I This last expression can be rewritten as

C = ((A0 + A1)(B0 + B1) + A1B1)x + A1B1 + A0B0.

Thus this multiplication costs 3 multiplications and 4 adds over F2.



Outline
F2

Gray Codes
Multiplication
Elimination

Fp

F2e

Precomputation Tables
Karatsuba Multiplication
Performance

Fp[x ]



Performance: Multiplication

e Magma GAP SW-NJ SW-NJ/ [Mon05] Bitslice Bitslice/
2.15-10 4.4.12 M4RI M4RI

1 0.100s 0.244s – 1 1 0.071s 1.0
2 1.220s 12.501s 0.630s 8.8 3 0.224s 3.1
3 2.020s 35.986s 1.480s 20.8 6 0.448s 6.3
4 5.630s 39.330s 1.644s 23.1 9 0.693s 9.7
5 94.740s 86.517s 3.766s 53.0 13 1.005s 14.2
6 89.800s 85.525s 4.339s 61.1 17 1.336s 18.8
7 82.770s 83.597s 6.627s 93.3 22 1.639s 23.1
8 104.680s 83.802s 10.170s 143.2 27 2.140s 30.1

Table: Multiplication of 4, 000× 4, 000 matrices over F2e



Performance: Reduced Row Echelon Forms

e Magma GAP LinBox M4RIE
2.15-10 4.4.12 (mod p) 1.1.6 6b24b839a46f

2 6.04s 162.65s 49.52s 3.31s
3 14.47s 442.52s 49.92s 5.33s
4 60.37s 502.67s 50.91s 6.33s
5 659.03s N/A 51.20s 10.51s
6 685.46s N/A 51.61s 13.08s
7 671.88s N/A 53.94s 17.29s
8 840.22s N/A 64.24s 20.25s
9 1630.38s N/A 76.18s 260.77s

10 1631.35s N/A 76.45s 291.30s

Table: Elimination of 10, 000× 10, 000 matrices on 2.66Ghz i7



Outline
F2

Gray Codes
Multiplication
Elimination

Fp

F2e

Precomputation Tables
Karatsuba Multiplication
Performance

Fp[x ]



Prime-slicing

I The idea of bitsliced Karatsuba multiplication can be trivially
extended to Fpe and Fp[x ] for p > 2.

I That is, we represent (Fp[x ])m×n as Fm×n
p [x ] and

I use non-commutative Karatsuba-style formulas for
multiplications in Fp[x ].



Finding Formulas: Evaluation-Interpolation Schemes I

f , g ∈ F2e , we

I consider them as polynomials f (x), g(x) in F2[x ];

I evaluate those polynomials on sufficiently many points
(possibly over some extension of F2),

I perform pointwise multiplication and

I interpolate (f · g)(x) from those points.



Finding Formulas: Evaluation-Interpolation Schemes II

Example: We multiply f , g ∈ F23 , i.e., we are searching for

h(x) = f (x) · g(x).

We compute h(x) mod p(x) where deg(p(x)) > deg(h(x)) such
that h(x) mod p(x) = h(x) and set

p(x) = (x +∞) · (x) · (x + 1) · (x2 + x + 1).

That is, we compute modulo the factors of p(x) and reconstruct
the result using the Chinese remainder theorem. Multiplication
modulo (x + c) costs one in F2, modulo x2 + x + 1 it costs 3 in F2.
The total cost is 6 multiplications in F2.



Finding Formulas: Evaluation-Interpolation Schemes III

We can improve this strategy.

Example: We consider f , g ∈ F211 . Instead of computing the
solution modulo the product of irreducible polynomials

p(x) = (x +∞) · (x) · (x + 1) · (x3 + x + 1) · (x3 + x2 + 1) ·
(x4 + x + 1) · (x4 + x3 + 1) · (x4 + x3 + x2 + x + 1)

with cost 3 + 2 · 6 + 3 · 9 = 42, we compute modulo

p(x) = (x +∞) · (x2) · (x + 1)2 · (x2 + x + 1) · (x3 + x + 1) ·
(x3 + x2 + 1) · (x4 + x + 1) · (x4 + x3 + 1).

This only costs 1 + 3 · 3 + 2 · 6 + 2 · 9 = 40 multiplications over F2.



Finding Formulas: Evaluation-Interpolation Schemes IV

How to find a good p(x) for some degree e? ⇒ We express
this as a mixed integer linear program.

Let c be a table holding costs of polynomial multiplication, such
that cd is the cost of multiplying two polynomials modulo some
polynomial of degree d : c0 = 0, c1 = 1, c2 = 3, . . .

Also, let

Gp(d) :=
1

d

∑
di |d

µ(d/di )p
di

be the function which returns the number of irreducible
polynomials of degree d over Fp.



Finding Formulas: Evaluation-Interpolation Schemes V

We want to minimize the function

1 +

dlog2(2e)e∑
d=1

cdnd (1)

where nd are number of degree d factors (+1 for x +∞).

Our nd must satisfy deg(p(x)) ≥ 2e − 1

dlog2(2e)e∑
i=1

nd · d ≥ 2e − 2. (2)



Finding Formulas: Evaluation-Interpolation Schemes VI

We also have

0 ≤
∑

i∈D(d)

ni ≤
∑

i∈D(d)

Gp(i) (3)

for 1 ≤ d ≤ dlog2(2e)e where D(d) is defined as:

D(d) =

{
{d} if d is odd

{d} ∪ D(d/2) else

Minimizing (1) under the constraints (2) and (3), returns a p(x)
given by ni .

This is a very simple mixed integer linear program and solving it
for very large e is easy.



Finding Formulas: Evaluation-Interpolation Schemes VII

Adding a trick about field embeddings we get the follwing table.

e F2 F3 F17 F39 F251

10 33 27 20 19 19
100 532 454 290 279 199

1000 6430 5455 3844 2997 2873
10000 71425 62845 43543 39217 29873

100000 755554 679861 474276 434007 355494

Table: Upper bounds on mul. in Fp for f · g ∈ Fpe .

Note

There are sometimes better bounds known in the literature, the
point here is that we can compute explicit formulas quickly.



Fin



V. Arlazarov, E. Dinic, M. Kronrod, and I. Faradzev.
On economical construction of the transitive closure of a
directed graph.
Dokl. Akad. Nauk., 194(11), 1970.
(in Russian), English Translation in Soviet Math Dokl.

Frank Gray.
Pulse code communication, March 1953.
US Patent No. 2,632,058.

Peter L. Montgomery.
Five, six, and seven-term Karatsuba-like formulae.
IEEE Trans. on Computers, 53(3):362–369, 2005.

Volker Strassen.
Gaussian elimination is not optimal.
Nummerische Mathematik, 13:354–256, 1969.


	F2
	Gray Codes
	Multiplication
	Elimination

	Fp
	F2E
	Precomputation Tables
	Karatsuba Multiplication
	Performance

	Fp[x]

