Yet another Polly Cracker talk

… but this time

  • it has less formal definitions.
  • I also added a section talking about trading noise for degree and
  • a brief discussion on related work.

Speaking of related work: Efficient Fully Homomorphic Encryption from (Standard) LWE by Zvika Brakerski and Vinod Vaikuntanathan is a good read. In summary, it has two main contributions:

  1. a somewhat homomorphic scheme based on LWE which turns out to be the same (as far as I can tell) as ours and
  2. a new dimension reduction trick which allows to turn it into a fully homomorphic scheme.

What is kind of curious about this work is its explicit non-algebraic perspective. While we talk about LWE from a multivariate polynomial ideal perspective the authors of 2011/344 explicitly state that their scheme is not.  I am not sure we’d have seen the dimension reduction trick with our perspective, though.

Polly Cracker, Revisited

I’ve been mentioning this work a few times; well,  finally a pre-print is ready (by myself, Pooya Farshim, Jean-Charles Faugère and Ludovic Perret).

In this paper we initiate the formal treatment of cryptographic constructions – commonly known as “Polly Cracker” – based on the hardness of computing remainders modulo an ideal over multivariate polynomial rings. This work is motivated by the observation that the Ideal Remainder (IR) problem is one of the most natural candidates to build homomorphic encryption schemes. To this end, we start by formalising and studying the relation between the ideal remainder problem and the problem of computing a Gröbner basis.

We show both positive and negative results.

On the negative side, we define a symmetric Polly Cracker encryption scheme and prove that this scheme only achieves bounded CPA security under the hardness of the IR problem. Furthermore, using results from computational commutative algebra we show that a large class of algebraic transformations cannot convert this scheme to a fully secure Polly Cracker-type scheme.

On the positive side, we formalise noisy variants of the ideal membership, ideal remainder, and Gröbner basis problems. These problems can be seen as natural generalisations of the LWE problem and the approximate GCD problem over polynomial rings. After formalising and justifying the hardness of the noisy assumptions we show – following the recent progress on homomorphic encryption – that noisy encoding of messages results in a fully IND-CPA secure somewhat homomorphic encryption scheme. Together with a standard symmetric-to-asymmetric transformation for additively homomorphic schemes, we provide a positive answer to the long standing open problem proposed by Barkee et al. (and later also by Gentry) of constructing a secure Polly Cracker-type cryptosystem reducible to the hardness of solving a random system of equations. Indeed, our results go beyond that by also providing a new family of somewhat homomorphic encryption schemes based on new, but natural, hard problems.

Our results also imply that Regev’s LWE-based public-key encryption scheme is (somewhat) multiplicatively homomorphic for appropriate choices of parameters. Finally, we estimate the parameters which define our cryptosystem and give a proof-of-concept implementation.

Sage source code included, have fun.

Slides: Introduction to Algebraic Techniques in Block Cipher Cryptanalysis

This morning I delivered my talk titled “Algebraic Techniques in Cryptanlysis (of block ciphers with a bias towards Gröbner bases)” at the ECrypt PhD Summerschool here in Albena, Bulgaria. I covered:

  1. Why bother
  2. Setting up equation systems
  3. Solving (GBs, SAT solvers, MIP, Cube Testers)
  4. “Advanced” Techniques

Well, here are the slides, which perhaps spend too much time explaining F4.

PS: This is as good as any opportunity to point to the paper “Algebraic Techniques in Differential Cryptanalysis Revisited” by Meiqin Wang, Yue Sun, Nicky Mouha and Bart Preneel accepted at ACISP 2011. I don’t agree with every statement in the paper – which revisits techniques Carlos and I proposed in 2009 – but our FSE 2009 paper does deserve a good whipping, i.e., we were way too optimistic about our attack.

Postdoc Position at LIP6

My team is hiring:

One-year post-doctoral position announcement

A 12-month postdoctoral position is available at the INRIA/LIP6/UPMC SALSA team on Campus Jussieu (located in the “Quartier Latin” of Paris, France). We are seeking candidates to apply for this position. The postdoc will work in the joint ANR/NSFC EXACTA project on polynomial system solving and its applications in cryptography, computational geometry, and biology.

Continue reading “Postdoc Position at LIP6”

Webinar about Polly Cracker

I will give an online talk on Wednesday 12pm New York time (EDT) as part of the “Symbolic Computations and Post-Quantum Cryptography” seminar series. My talk is titled “Polly Cracker Revisited” and I’ll present classical and noisy problems in multivariate polynomial rings and how they relate to homomorphic encryption. I will post my slides here afterwards.

Edit: Slides with typos and all that.

Algorithms for LWE and the Approximate GCD Problem over the Integers

Let n be the number of variables in some polynomial ring \mathbb{R}[x_1,\dots,x_n] (with \mathbb{R} a ring) and let d be the degree of a bunch of polynomials F = [f_1,\dots,f_m] in \mathbb{R}, i.e., \deg(f_i) = d. Of course, we can “solve” F by computing a Gröbner basis on F. Furthermore, it is well-known that if n=1 computing a GB is equivalent to computing the GCD of F and that if d=1 computing a GB is equivalent to Gaussian elimination, i.e., finding a triangular basis for a module. In a nutshell, Gröbner bases generalise GCDs and Gaussian elimination. So far, so classical.

It is no secret that I spent some time looking into a problem which we call Gröbner Bases with Noise (GBN), which again can be seen — with the appropriate choice of parameters — as a generalisation of the LWE problem (cf. these slides for some details. Sorry, the paper is still not done). Similarly, we may consider GBN as a generalisation of an approximate GCD problem over \mathbb{R}[x].

In our work (you know, the one which isn’t done yet), we define GBN over \mathbb{F}_q to keep things simple but the notion can easily be extended to for example \mathbb{Z}. Hence, one could say GBN over \mathbb{Z} is a generalisation of GCDs over \mathbb{Z}[x] and in particular over \mathbb{Z} (cf. this paper which constructs a homomorphic encryption scheme based on the approximate GCD problem over the integers) which is just \mathbb{Z}[x] restricted to constant polynomials. So, we have a connection between GBN, LWE and the approximate GCD problem.

Now, as my tag cloud gives away, I like linear algebra and have the tendency to think about problems in terms of linear algebra and triangular bases. Hence, the above connection made me think about the applicability of algorithms for solving LWE to the approximate GCD problem over the integers. It turns out, they are applicable (kinda).

Continue reading “Algorithms for LWE and the Approximate GCD Problem over the Integers”

On the Relation Between the Mutant Strategy and the Normal Selection Strategy in Gröbner Basis Algorithms

We finally (sorry for the delay!) finished our paper on the Mutant strategy. Here’s the abstract:

The computation of Gröbner bases remains one of the most powerful methods for tackling the Polynomial System Solving (PoSSo) problem. The most efficient known algorithms reduce the Gröbner basis computation to Gaussian eliminations on several matrices. However, several degrees of freedom are available to generate these matrices. It is well known that the particular strategies used can drastically affect the efficiency of the computations.
In this work we investigate a recently-proposed strategy, the so-called Mutant strategy, on which a new family of algorithms is based (MXL, MXL2 and MXL3). By studying and describing the algorithms based on Gröbner basis concepts, we demonstrate that the Mutant strategy can be understood to be equivalent to the classical Normal Selection strategy currently used in Gröbner basis algorithms. Furthermore, we show that the partial enlargement technique can be understood as a strategy for restricting the number of S-polynomials considered in an iteration of the F4 Gröbner basis algorithm, while the new termination criterion used in MXL3 does not lead to termination at a lower degree than the classical Gebauer-Möller installation of Buchberger’s criteria.
We claim that our results map all novel concepts from the MXL family of algorithms to their well-known Gröbner basis equivalents. Using previous results that had shown the relation between the original XL algorithm and F4, we conclude that the MXL family of algorithms can be fundamentally reduced to redundant variants of F4.

Polly Cracker Revisited – Slides

I just gave a talk in the ISG seminar at Royal Holloway, University of London about this Polly Cracker business I’ve been thinking about lately. I’ve also decided to publish the slides. However, I’d like to stress that everything in there is preliminary, i.e. this is yet another of those presentations presenting work in progress (which I personally think is a good thing to do). Anyway, here’s the abstract:

“Since Gentry’s seminal work on homomorphic encryption, this area has received considerable attention from the cryptographic community. Perhaps one of the most natural homomorphic schemes conceivable is Polly Cracker which is naturally homomorphic. However, almost all Polly Cracker inspired schemes that have been proposed so far have been badly broken. In fact, it was conjectured about 15 years ago in “Why you cannot even hope to use Gröbner Bases in Public Key Cryptography: an open letter to a scientist who failed and a challenge to those who have not yet failed.”that it was impossible to construct a secure Polly Cracker-style scheme.

In this work we initiate a formal treatment of cryptosystems based on the hardness of Gröbner basis computations for random systems of equations, discuss their limitations, why standard techniques from homomorphic encryption research fail in this area, and propose a Polly Cracker variant based on polynomial system solving with noise which is a first step towards a provably secure Polly Cracker public-key scheme.”

Mutants are people too

Despite being proven to be a redundant variant of the F4 algorithm, the XL algorithm still receives a lot of attention from the cryptographic community. This is partly because XL is considered to be conceptually much simpler than Gröbner basis algorithms. However, in doing so the wealth of theory available to understand algorithms for polynomial system solving is largely ignored.

The most recent and perhaps promising variant of the XL algorithm  is the family of MXL algorithms which are based around the concept of Mutants. Assume in some iteration the XL algorithm finds elements of degree k while considering degree D > k. In a nutshell, the idea of the MutantXL algorithm is to continue the XL algorithm at the degree k+1 instead of D+1 which is what the XL algorithm would do. The natural question to ask is thus what Mutants are in terms of Gröbner basis theory; are they something new or are they a concept which is already known in the symbolic computing world under a different name?

I was in Darmstadt this week visiting the group which mainly drives the effort behind the MXL family of algorithms. As part of my visit I gave a talk about the relation of the Mutant strategy and the normal strategy used in Gröbner basis algorithms for selecting critical pairs called … the Normal Selection Strategy. In the talk we show that the Mutant strategy is a redundant variant of the Normal Selection Strategy. Also, I talked quite a bit about S-polynomials and how they can be used to account for every single reduction that happens in XL-style algorithms. Finally, I briefly touched on the “partial enlargement strategy” which was introduced with MXL2 showing that it is equivalent to selecting a subset of S-polynomials in each iteration of F4.

Unfortunately, there’s no full paper yet, so the presentation has to suffice for now.

Update: It was pointed out to me that a better way of phrasing the relationship is to state that the Mutant selection strategy can be understood as a redundant variant of the Normal selection strategy when used in F4. This way is better because our statement is strictly about an algorithmic relation and not about why did what first knowing what … which is how one could read the original phrasing.

Cold Boot Key Recovery by Solving Polynomial Systems with Noise

Carlos and I finally managed to put our paper on polynomial system solving with noise and its application to the cold boot problem out.

Abstract: A method for extracting cryptographic key material from DRAM used in modern computers has been recently proposed in [9]; the technique was called Cold Boot attacks. When considering block ciphers, such as the AES and DES, simple algorithms were also proposed in [9] to recover the cryptographic key from the observed set of round subkeys in memory (computed via the cipher’s key schedule operation), which were however subject to errors due to memory bits decay. In this work we extend this analysis to consider key recovery for other ciphers used in Full Disk Encryption (FDE) products. Our algorithms are also based on closest code word decoding methods, however apply a novel method for solving a set of non-linear algebraic equations with noise based on Integer Programming. This method should have further applications in cryptology, and is likely to be of independent interest. We demonstrate the viability of the Integer Programming method by applying it against the Serpent block cipher, which has a much more complex key schedule than AES. Furthermore, we also consider the Twofish key schedule, to which we apply a dedicated method of recovery.

Btw. an older version of our code for Sage for solving polynomial systems with errors is available on (… yes, I should update it to the most recent version). Here’s an example from my talk at the Tools for cryptanalysis workshop 2010:

sage: p = PRESENT(Nr=1,sbox_representation='lex')
sage: F = present_dc(,r=1,return_system=True,characteristic=True)
sage: H = F.gens()[:-64]
sage: S = F.gens()[-64:]
sage: S[:9]
(Y00100 + Y10100, Y00101 + Y10101, Y00102 + Y10102,  Y00103 + Y10103, Y00104 + Y10104, Y00105 + Y10105,  Y00106 + Y10106, Y00107 + Y10107 + 1, Y00108 + Y10108)

sage: F_prob = ProbabilisticMPolynomialSystem(F.ring(),H,S)
sage: s,t = F_prob.solve_mip(solver='SCIP')
Writing problem data to '/home/malb/.sage//temp/road/16007//tmp_1.mps'6605 records were writtenCPU Time: 0.20  Wall time: 25.95, Obj:  3.00

Not that this was a good way of attacking a blockcipher, but you get the idea.