I guess one perk of being on vacation is that one can get more work done. Hence, I finished implementing PLE decomposition (formerly known as PLS decomposition) and hence asymptotically fast Gaussian elimination. The implementation uses two matrix representations: mzd_slice_t and mzed_t. The former is optimised for implementing Karatsuba multiplication (cf., here) and the latter is optimised for using Travolta tables (cf., here). That is, multiplication is based on Karatsuba while the PLE base case is based on Travolta tables. The same applies to TRSM where the base case is also implemented using Travolta tables.
There is still a lot to be done:
- Both TRSM and PLE base cases use only one Travolta table while Gaussian elimination and multiplication use 6 and 8 in parallel respectively.
- There way too much copying going on. For example, I was lazy and implemented TRSM upper left with respect to matrices which do not start at offset 0 with respect to a machine word by simply copying the whole matrix out. Hence, we’re wasting memory where we shouldn’t.
- PLE isn’t cache efficient yet and I assume that the code isn’t very good for sparse-ish matrices (cf. the journey in M4RI improving this)

